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A generalized notion of a “sample space” is developed which allows for the simultaneous representation of the
outcomes of a set of related “random experiments,” Affiliated with each such generalized sample space is a
so-called “logic,” the elements of which are propositions that can be confirmed or refuted by observing the
outcomes of the random experiments. Stochastic models for the experimental situation represented by a given
sample space are introduced, and it is shown that such stochastic models induce generalized probability mea-

sures on the logic of this sample space.

1. INTRODUCTION

The purpose of the series of papers here begun is to
erect a new mathematical foundation for an opera-
tional theory of probability and statistics based upon

a generalization of the conventional notion of a sample
space. In subsequent papers, we shall formally estab-
lish on this foundation the notion of a “physical sys-
tem” and an affiliated “theory of measurement.” This
latter generalized theory of measurement should
prove to be particularly useful in the developing be-
havioral sciences and in addition shed some light on
the difficulties that surround the measuring process
in quantum mechanics. In other papers in this series,
the matter of statistical inference will be considered
in this nonclassical framework. In particular, it will
be shown that the Bayesian inference strategy ex-
tends naturally to this more general situation. As a
consequence of these considerations, four of the prin-
cipal types of “probability” (frequency, credibility,
rational betting and logical) put in an appearance and
prove to be naturally and coherently related. Further-
more, the customary mathematical representation of
the notion of conditioning resolves into a spectrum of
such representations, thus formally exposing a variety
of conditioning concepts.

In the present paper, we shall introduce our general-
ized sample spaces and show that there is a hier-
archy of “propositional systems” affiliated with each
such generalized sample space. Complete “ stochastic
models” for the empirical situation represented by a
generalized sample space will be formally introduced
as so-called weight functions, and it will be shown
that these weight functions can be used to induce gen-
eralized probability measures (states) on the affili-
ated propositional systems.

The distinguishing feature of the empirical sciences
is that propositions pertinent to such sciences are

confirmed and refuted solely in terms of evidence
secured as a consequence of the execution of physical
operations. In this regard, we shall by no means re-
strict the term physical operation to apply only to
traditional laboratory procedures. We are prepared,
for instance, to regard test procedures on an assem-
bly line, data gathering processes (such as opinion
polling), pencil and paper operations {such as execut-
ing computational algorithms), and even procedures
involving subjective approvals or disapprovals as
bona fide physical operations.

Let us make our definition of a physical operation
official: By a physical operation, we shall mean in-
structions that describe a well-defined, physically
realizable, reproducible procedure and furthermore
that specify what must be observed and recorded. In
particular a physical operation must require that, as
a consequence of each execution of the instructions,
one and only one symbol from a specified set R be
recorded as the result of that realization of the
operation.2 Carefully note, if we delete or add details
to the instructions for a physical operation, and, in
particular, if we modify the result set R in any way,
we thereby define a new physical operation.

Since the early 1930's, when Kolmogorov laid the
foundations for probability and statistics as we know
them today,3 it has become traditional to refer to the
result set R for a physical operation D as its sample
space. A subset D of R is called an event for the
operation D and certain of these events—but not neces-
sarily all of them—are decreed to be observable
events. One usually assumes that the collection F of
all observable events forms a o-field of subsets of
the sample space R. The physical operation D is
then regarded as being mathematically represented
by the ordered pair (R, ¥).

1667

Copyright © 1972 by the American Institute of Physics



1668

Suppose that the physical operation D is represented,
as above, by the ordered pair (R, §). One normally
associates with each event D € R a proposition p(D)
asserting that a result d € D was obtained as a con-
sequence of executing D. In this way, the results

d € D are regarded as confirming the proposition
p(D), while the results in R\D, the set-theoretic com-
plement of D in R, are regarded as refuling the pro-
position p(D). Thus, p(R\D) plays the role of the
negation or denial of the proposition p(D). If D, and
D, are events with D; & D,, one naturally says that
the proposition p(D,) implies the proposition p(D,),
since any result that confirms p(D,) will automati-
cally confirm p(D,). In this way, the set £ of all pro-
positions of the form p(D),D € R, forms a proposition
system isomorphic to the Boolean algebra @(R) of all
subsets of R. The set £ of all propositions of the
form p(D), D € ¥, forms a subsystem of £ that is
isomorphic to the Boolean o-algebra ¥. In this way,
the observable events are made to correspond to
those propositions that we regard as being opera-
tionally meaningful, i.e., the propositions in the sys-
tem £,. Stochastic models for the experimental situ-
ation at hand are now traditionally introduced as
normed measures on ¥, or—what amounts to the same
thing—on the propositional system £.

Suppose that D,,D,, D4, >+ is a sequence of disjoint
observable events for the operation D such that R =
Dy, UDyUDjzU -+, Using this sequence, we can
describe a “coarsened version” D* of the physical
operation D as follows: To execute D*, we execute
D, but we record the result of D* as that unique
observable event D, that contains the result 7 obtain-
ed from our execution of D. If F* denotes the o-field
generated in R by D,,D,,Dg, -+, then §* is a ¢-sub-
field of ¥. By a slight abuse of notation, one can re-
gard the coarsened operation ©* as being mathe-
matically represented by the pair (R, ¥*). f D* is a
coarsened version of D in the above sense, we say
that D is a vefinement of D*.

In the empirical arts and sciences, a well-founded
study is frequently concerned not with a single physi-
cal operation, but rather with some coherent collec-
tion 9N of physical operations—usually complete or
exhaustive in some sense. We shall refer to such a
collection 9N of physical operations as a manual, since
we might imagine it to be a manual or catalog of pro-
cedures. How might the Kolmogorov representation
be extended to account for such a situation?

A traditional, and often implicit, answer to this ques-
tion has been to presume that there exists a suitable
“grand canonical operation” D that simultaneously
refines all of the operations in the manual 9R. The
manual 9N can then be represented by the appropriate
collection of o-subfields of the g-field representing
D. Perhaps the prototype for all such D is the “grand
canonical measurement” of classical mechanics.
This “in principle” operation permits one to deter-
mine simultaneously the location and the momentum
of all the particles of a physical system. It is essen-
tial for the determinism claimed for classical
mechanics.

In quantum mechanics, the celebrated Heisenberg
commutation rules reject both determinism and even
an in principle possibility of a grand canonical mea-
surement. Thus, in quantum mechanics, we are denied

J. Math. Phys., Vol. 13, No. 11, November 1972

D. J., FOULIS AND C. HH RANDALL

the convenience of a single classical sample space in
terms of which we are always able to confirm or re-

fute the propositions concerning the measurements of
quantum mechanical observables.

Therefore, an extension of the Kolmogorov represen-
tation to any manual of physical operations by means
of a grand canonical operation is prohibited by the
tenets of quantum physics. The irreducible uncer-
tainties commonly arising in the descriptive sciences
would also suggest the absence of such a grand can-
onical operation. Incidentally, the existence of such a
grand canonical operation is often implicit in the use
of “mathematical models.”

We are now ready to formulate our generalized de-
finition of a sample space. Suppose that we have a
given manual 91 of physical operations. For DeM

we let Rg be the result set corresponding to ®. In
general, the various result sets Ry will not be dis-
joint because of the accidental representation of dif-
ferent results corresponding to different operations
by the same symbol. To obviate this difficulty, we
introduce the notion of an outcome of a physical opera-
tion. Outcomes will presently be defined so as to
satisfy certain axioms, and so our preliminary defini-
tion is only intended to be suggestive. Roughly, an out-
come is a result so labeled or so constituted that the
physical operation (or operations) capable of produc-
ing it can be discerned, [For instance, a result » of
the physical operation D could be converted into an
outcome by replacing it by the ordered pair (D, 7).]

We are going to assume that the various result sets
Rg for the physical operations D in the manual 9 are
actually outcome sets. We can now be quite specific
about what we mean by this, namely, we are going to
require that if D, P € M and if Ry, C Ry, then D= P
and Rgp= Ry. In particular, this requirement implies
a one-to-one correspondence D <> Rg between physi-
cal operations in the manual 9% and their outcome
sets. We are accordingly entitled to identify a given
physical operation D with its outcome set Rg, and it
will prove to be mathematically convenient to do just
that. Thus, we shall refer to a set of the form R,

D € M, as an operation (dropping the adjective “physi-
cal”). We denote by @ the set of all such operations;
thus, @ is our mathematical representation for the
manual I of physical operations. Accordingly, we
shall refer to @ as our manual of opevations.

Let X denote the set-theoretic union of all of the
operations in the manual, @, X = U {E |E € G}. Thus,
X is the set of all possible outcomes of all operations
in our manual. We define a binary relation 1 on the
set X as follows: For x,y € X, x L y means that
there exists an operation E € @ such that both x and
y belong to E,but x = y. Intuitively,x L y means that
the outcome x operationally vejects the outcome y in
the sense that there exists an operation E € @ for
which x and ¥ are mutually exclusive outcomes, i.e.,
if E was executed and x was obtained as the outcome,
then y was not obtained as the outcome of this execu~
tion of E. (For an alternate interpretation of 1, see
Ref. 4.)

If E € G is an operation, we call a subset D of E an
event for E, A subset D of X will be called an event
provided that it is an event for some operation E € Q.
An orthogonal sel is defined to be a subset K of X
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such that ¥ 1 y holds for all x,y € K with x #y. Evi-
dently, every event is an orthogonal set. In general,
there may be orthogonal sets that are not events.
However, we have found that it is mathematically con-
venient to make the following assumption, which we
call the axiom of coherence: If D is an orthogonal
subset of X and if there exist two operations E, F <

@ such that D € E U F, then D is an event. It is not
easy to provide the heuristics for the axiom of co-
herence at this stage of the game. Suffice it to say
that all of the generalized sample spaces which we
construct in the sequel will satisfy this axiom and
that, without it, severe mathematical difficulties seem
to arise. Roughly, the coherence axiom stipulates the
existence of a “sufficient number of coherently re-
lated operations.”

We summarize the above in the following definition:
A genevalized sample space is a triple (X, 1, @) con-
sisting of a nonempty set X, a symmetric relation 1
on X such that x L y implies x = y, and a collection &
of subsets of X satisfying the following conditions:

(i) X=U{E|E € &} (covering condition).

(ii) f E € @,and if x,y € E with x # y,then x L ¥
(orthogonality condition).

(iii) If E,F € Q,and if E C F,then E = F (irredun-
dancy condition).

(ivy f E,Fe Q,if DS E U F,and if x L y holds for
all x,y € D with x # y,then there exists G € G such
that D € G (coherence condition).

If (X, 1, @) is such a generalized sample space, we
refer to the sets E belonging to the collection G as
operations and we refer to @ as the manual of opera-
tions. A subset D of X such that D C E for some
operation E € @ is called an event. A subsetK of X
such that x 1L y holds for all x,y € K withx = y is
called an orthogonal set. Elements x € X are called
outcomes. Outcomes x and y with x L y are said to
be orthogonal or to operationally veject each other.

Let D be a single physical operation with result set
R. Clearly, the generalized sample space corres-
ponding to the manual 91 = {D} consisting just of the
single physical operation D is (X, L, G), where X = R,
L is the relation of inequality, and @ = {R} is the col-
lection consisting just of the single set R.

More generally, if (X, L, @) is the generalized sample
space corresponding to a certain “empirical domain
of discourse,” then the operations E € @ and the
manner in which they intertwine constitute a mathe-
matical description of the pertinent physical opera-
tions and the manner in which they are related.

2. PROPERTIES OF GENERALIZED SAMPLE
SPACES

In what follows, we shall refer to generalized sample
spaces simply as sample spaces. Thus, let (X,L, Q)
be a sample space.

Lemma 1: If D is an orthogonal subset of X and if
E,E,,...,E, is a finite sequence of operations in @,
thenD S E, U E, U -+ U E, implies that D is an
event.

The proof of Lemma 1 is an easy exercise in mathe-
matical induction making use of the coherence con-
dition. A consequence of Lemma 1 and the covering
condition is that every finite orthogonal subset of X is
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an event. In particular, using the orthogonality con-
dition and the latter remark, we see that for x,y € X,
x 1 v if and only if x # y and there exists an operation
E e @ suchthatx,y € E.

If D, and D, are events, we shall say that D, and D,
are compatible if there exists an operation £ € @
such that D, U D, C E.

Lemma 2: Let Dy,D,,...,D, be a finite sequence
of pairwise compatible events. Then D, U D, U ... U
D, is an event.

Proof: PutD =D, UD,U *++ UD,. For eachi{ =
1,2,...,n,choose an operation F; with D; € E;. Then,
DS E{UE,U -+ UE,. By Lemma 1, it will be
sufficient to show that D is an orthogonal set. Thus,
let x,y € Dwithx = y. Sayx € D;andy D, 1=14,
j = n. By the assumption of pairwise compatibility,
D, U D_ is an event, so that x L y holds and the proof
is complete.

Lemma 3: Every operation E € @ is a maximal
orthogonal set,

Proof: Suppose that E € @, but that E is not a
maximal orthogonal set. Then, there exists x € X
with x ¢ E such that E U {x} is an orthogonal set, By
the covering condition, there exists an operation F
@ with x € F. Thus,E U {x} € E U F. By the co-
herence condition, E U {x} is an event; hence, there
exists an operation G € A with E U {x} € G. In par-
ficular, E C G, so the irredundancy condition forces
E = G. This yields the contradiction x € E and
proves the lemma.

The converse of Lemma 3 need not hold, as we now
show by an example. Suppose that we have a counting
device the output of which is a nonnegative integer.
For each integern = 0,1, 2, - - -, we describe a physi-
cal operation D, as follows: To execute D, , read the
output 7 of the counting device and record » as the
result of D, if » = n. On the other hand, if » > =,
record the result of D, as ¢,. Thus, the result set for
D, isR, ={0,1,2,...,n,e,}. Clearly,D,,; is a re-
finement of D, , since, if we know the result of D, ,,
then we automatically know the result of D,. We now
build a sample space (X,L,Q) corresponding to the
manual M = {:Dn [n=0,1,2,---} of physical opera-
tions by setting @ ={R, | = 0,1,2,---}, X = U2 R,
and defining x + y for x,y € X by the condition that

x # y and there exist a nonnegative integer n with
%,y € R,. The set E =1{0,1, 2, - - -} of all nonnegative
integers is a maximal orthogonal subset of X, but it
does not appear as an operation in @. Intuitively, E
corresponds to the physical operation D_ of reading
the counter and recording the output v € E. However,
we did not include D, in our manual I of physical
operations.

The above example shows that a maximal orthogonal

subset E of a sample space (X, L, @) which is not an

operation in @ might be construed as an “in principle
or as an “idealized” operation which, in some sense,

is a “limiting case” of the operations available in the
manual @. If D is an orthogonal subset of X which is

not an event, then, by Zorn's lemma, D can be extend-
ed to a maximal orthogonal set E which cannot be an
operation. It is natural to regard such a D as an

»
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idealized event for the idealized opevation E. This
will be precisely our point of view in the sequel.

Lemma 1 suggests the following definition: The
sample space (X, 1, @) will be called o-cohevent pro-
vided that every orthogonal set D that is contained in
the union of a countable sequence of operations is an
event. If every orthogonal set is an event, so that there
are no idealized operations, then we shall call the
sample space (X, 1, @) completely coherent. A slight
extension of the argument in Lemma 2 shows that, in
a o-coherent sample space, the union of a countable
sequence of pairwise compatible events is again an
event.

An arbitrary subset A of the sample space (X,1, Q)
will be called an evidence sef. If a physical operation
corresponding to an operation £ € @ is executed and
an outcome e € E is obtained as a consequence, then
we shall say that {ie evidence A has been secured
precisely when e € A. We denote by A+ the set of all
outcomes x € X which operationally reject all of the
outcomes e € A in terms of which the evidence A
could be secured. In symbols, then, At = {x cXlxla
for all a € 4}. We define A++ = (A4)+, Attt = (A+L)L,
etc. In the following lemma, we collect the basic
facts about A+. The proof is quite straightforward,
using only the facts that L is symmetric and that x 1
y implies x = y.

Lemma 4: Let A and B be evidence sets for the
sample space (X, 1,Q). Then:

(i) ANAt=¢ (¢ denotes the empty set).
(ii) A € B implies B+ C A+,

(iii) A C€ ALL,

(iv) At = ALtds,

(v) $t =X and X+ =¢@.

(vi) If € is a collection of subsets of X, then
wi{ciceehtr=n{ct|c e e}.

If C is an evidence set such that C = CL+, we say that
C is a closed evidence set. Using part (v) of Lemma
4, we see that C is closed if and only if there is an
evidence set B with C = B+, From this and part (iv)
of Lemma 4, it follows that the set-theoretic inter-
section of an arbitrary collection of closed evidence
sets is again closed.

If A and B are evidence sets and if A € B+, we shall
say that A and B are orthogonal to each other and
write A 1 B. Note that A L B means that every out-
come x in terms of which the evidence A could be
secured operationally rejects every outcome y in
terms of which the evidence B could be secured.
Evidently, two events are orthogonal if and only if they
are compatible and disjoint.

3. OPERATIONAL PROPOSITIONS

Sample spaces, as defined above, must be the source
of the evidence in terms of which the propositions of
empirical science are to be confirmed and refuted.

In this connection, let us reaffirm our view regarding
propositions as set forth in Ref. 2: A proposition is
well defined if and only if the exact conditions undey
which it is vegarded as being confivmed, as well as
those undey which tf is vegarded as being refuted, ave
stipulaled in tevms of admissible evidence.

Let (X,1, @) be a given sample space. In keeping with
the above doctrine concerning propositions, we define
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an operational proposition over (X, L, Q) to be an
ordered pair (A, B) of evidence sets 4, B C X, with
the understanding that the proposition (4, B) is con-
firmed exactly when the evidence A is secured and
refuted exactly when the evidence B is secured. Thus,
an operational proposition (4, B) can be confirmed or
refuted only by the expedient of executing an opera-
tion £ € @, recording its outcome e € E, and checking
toseeifec A orife € B, If ¢ € A, then the opera-
tional proposition (4, B) is confirmed by this execu-
tion of E, while if e B, then it is refuted by this
execution of E. If neither e € A nor ¢ € B, then the
operational proposition (4, B) is neither confirmed
nor refuted by this execution of E.

We define I, to be the set of all operational proposi-
tions over (X, 1, @). The negalion of an operational
proposition (4, B) is naturally defined to be the opera-
tional proposition (A,B) = (B, A). If (4,B),(C,D) ¢
Ily, we say that (A, B) implies (C,D) and we write
(A,B) =(C,D) ifand only if A € C and D € B. Thus,
(4, B) =(C, D) means that every outcome confirming
(A, B) confirms (C, D) and every outcome refuting
(C, D) refutes (4,B). We say that the operational pro-
positions (4, B) and (C, D) are disjoin! in case A N

C =@, that is, (4, B) and (C, D) can never be simul-
taneously confirmed by any outcome x € X. An opera-
tional proposition (4, B) that is disjoint from its
negation (4, B)’ is said to be self-consistent. Thus,
the self-consistent operational propositions are pre-
cisely those that can never be simultaneously con-
firmed and refuted by an outcome x € X. If (4, B),
(C,D) € N are such that A 1 C, then we say that
(4,B) is orthogonal to (C,D) and write (4,B) L (C,D).
Evidently, (4, B) L (C, D) means that every outcome

x € X that confirms (A, B) operationally rejects every
outcome y € X that could confirm (C, D) and conver-
sely. If the operational proposition (4, B) is ortho-
gonal to its negation (4, B)', that is, if A 1 B, then we
say that (4, B) is orvthoconsislent.

Obviously, the system (lly, <) is a complete lattice and
the negation map ’: I, — Il is an anti-automorphism
of period two on this lattice. The proposition system
(I1,,=,1,’) will be called the generalized opevational
logic over (X,1,@). An operation E € @ is said to
test the operational proposition (4, B) in Il if and
only if E € A U B;that is, E tests (4, B) precisely
when every execution of E yields an outcome e € E
which confirms or refutes (4, B). We say that (4,B)e
Il is lesfable if there exists an operation E € @ that
tests (4, B). A collection of operational propositions
is said to be simultaneously lestable if there exists a
single operation E € @ that tests every operational
proposition in the collection.

Let (4, B) be an operational proposition. We say that
an outcome x € X viriually confirms (A, B) if it opera-
tionally rejects every outcome that could refute (A, B),
that is, if x € B+. Similarly, if x € A+, that is, if x
operationally rejects every outcome that could con-
firm (A, B), then we say that x virtually vefules (A, B).
Notice that (A, B) is orthoconsistent if and only if
every outcome that confirms (A, B) also virtually con-
firms (A, B). We define the viriual negation of the
proposition (4, B) € I, by (4,B)* = (A%, B+). Thus,
the virtual negation of (4, B) is that operational pro-
position which is confirmed by those outcomes that
virtually refute (4, B) and is refuted by those out-
comes that virtually confirm (A4, B). If (4,B)+ =
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(A,B),then we say that (4, B) is a closed operational
proposition. Note that (A4, B) is closed if and only if
A is a closed evidence set and B = A+, Clearly, every
closed operational proposition is orthoconsistent and
every orthoconsistent operational proposition is self-
consistent. However, a closed operational proposition
need not be testable. If can be shown that our deci-
sions concerning the confirmation and refutation of
the propositions associated with events in the non-
classical sample space constructed in Ref. 2 lead to
closed and testable operational propositions.

Consider, for a moment, the classical situation in
which only a single physical operation D with outcome
set R is under consideration. The corresponding
sample space is (R, #, @), where @ = {R} is the collec-
tion consisting of the single set R. Clearly, a testable
operational proposition over (R, %, @) must be of the
form (4, B), where R = A U B. The operational pro-
position (4, B) is self-consistent if and only if it is
orthoconsistent, and it is orthoconsistent if and only
if A N B =%. Thus, the testable, orthoconsistent
operational propositions—in this classical case—are
precisely those of the form (D, R\D), where D is an
event. Note that (D, R\D) is automatically closed.
Under such circumstances, the customary association
of an event D with a proposition p(D) = (D,R\D) is
quite natural--so much so, in fact, that such an event
and proposition are rarely distinguished, Although it
is less transparent in the general case, there is a
reasonable extension of this correspondence between
events and operational propositions to the situation
represented by a generalized sample space.

Let (X, 1, @) be any (generalized) sample space and
set D be an event for this sample space. Qur purpose
is to associate with D an operational proposition

p(D) = (4, B) over (X, 1, @) in such a way that the
most salient features of the above classiecal corres-
pondence are preserved. Naturally, we wish to have
D £ A so that any outcome d € D will confirm p(D).
Also, if e is an outcome that operationally rejects
every outcome d € D, that is, if e € D+, then we wish
to require that e refutes p(D). Finally, we wish to
stipulate that p(D) be a closed operational proposition.
This requires that A = A++and that B = AL,

Lemma 5: Let D be an event for the sample space
(X, 1, @) and let (A, B) be an operational proposition
over (X,1,@) such thatD CA,DLC B,A =A*! and
B =A' ThenA =D!* B =D!and if Ec@ is any
operation with D & E, then E tests (4, B).

Pyoof: Using the facts in Lemma 4, we compute as
follows: Since D & A, then A+ S D+, s0 D+ C AL = A,
Since D+ C B =A4 then A = A4+ C DL, Thus we
have A = DL and B = At = D4+ = Dt as required.
Suppose that D € £ ¢ Q. Since E is an orthogonal set,
then E\D S D+*=B,sc E=DU(E\D)CDUBCAU
B, that is, E tests (4,B). The proof is complete.

It follows from Lemma 5 that there is only one de-
finition of p(D) compatible with our requirements,
namely p(D) = (D++,D*), Furthermore, if D is any
event and if we define p{D) in this fashion, then
Lemma 5 shows that p(D) is a testable closed opera-
tional proposition. It is convenient to extend the
above definition of p(D) in such a way that a closed
operational proposition p(A) will be affiliated with
every evidence set A € X, Thus,we make the follow-
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ing definition: For A C X, p(4) € Il is defined by
plA) = (ALL AY),

4. COMPLETE STOCHASTIC MODELS

Let (X, L, Q) be a sample space. We begin heuristi-
cally to introduce the notion of a “complete stochastic
model” for the empirical situation represented by
{X,1,@Q). If x € X, denote by w(x), 0 = wlx) < 1, the
“long-run relative frequency” of the occurrence of
the outcome x as a consequence of the execution of an
operation E for which x € E. Implicit in this des-
cription of w(x) is the supposition that this “long-run
relative frequency” is independent of the choice of the
operation E, provided only that x € E. If, in a given
experimental situation, such independence does not
seem to obtain, the indication would be that the sample
space (X, L, @) was incorrectly chosen and that it
should be replaced by a more realistic sample space.
Naturally, the above stipulations require that, for any
operation E € @, 2, pwle) = 1.

The above considerations lead us to the following
formal definition: By a weight function for the sample
space (X, 1, @), we mean a real-valued function w de-
fined on X such that 0 = w(x) <1 for all x € X and
such that },.;w(e) = 1 holds for all E € G. We shall
denote by Q(X, L, @) the set of all weight functions for
the sample space {X,1,@). Hw € Q{X,L, Q) and if D
is an event for (X, L, @),we define w(D) = 2, pw{d).
Clearly, 0 < w(D) = 1,and w(D) can be interpreted as
the long-run relative frequency with which the evi-
dence D will be secured as a consequence of the exe-
cution of operations E € @ for which D C E.

Now let w € (X, 1,@),let E € @, and let (4, B) € II;.
We define wg(A4, B) = w(E N A), noting that E N A is an
event. Thus, wg(4,B) can be interpreted as the long-
run relative frequency with which the operational pro-
position (4, B) will be confirmed as a consequence of
executions of the operation E.

Theorem 1; Letw € QX,1,Q);let E, F ¢ @;let
(4, B) be an orthoconsistent operational proposition
over (X,.1, @) and suppose that both E and F test
(A, B). Then wy(4,B) = wg(4,B).

Proof: Since A 1L B,then A NB =@, Since F C
A U B, then F = (FN A) U(FnB), where the sets F N
A and F N B are disjoint events. It follows that 1 =
W(F)=w(FNA)+ w(FNB), PutD = (EN A) U
(FNB). Since A 1 B and since E and F are orthogonal
sets, it follows that D is an orthogonal set. Since D C
E U F,the coherence condition implies the existence
of an operation G € @ such that D C G. It follows that
w(D} = w(G) = 1. Since A and B are disjoint, then
(E N A) and (F n B) are disjoint events; hence, w(E N
A+ wlFNB)=wD) = 1=wF) =wFNA) + wFn
B). Consequently, w(E N A) = w(F NA). A symmetric
argument shows that w(F N A} < w(E n 4), and proves
the theorem.

Let w e Q(X, 1, @) and 1et (4, B) be any orthoconsis-
tent testable operational proposition over (X, L, @).
We define w(d, B) by w(A4,B) = wg(A, B), where E is
any test operation in & for {4, B). By Theorem 1,
w(A, B) is well defined. Intuitively, w(4,B) is the long-
run relative frequency with which (4, B) will be con-
firmed as a consequence of the execution of test
operations for (4, B). In particular, if D is any event,
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then p(D) = (D+4, D<) is a testable orthoconsistent
operational proposition, so that w(p(D)) is defined.

Corollary 1: Let we Q(X,L,Q) and let D be an
event for the sample space {X,1,®). Then, w{(p(D)) =
w(D).

Pyoof: Since D is an event, there exists an opera-
tion E € @ with D € E. By Lemma 5, E tests p(D) =
(D++,D4). Hence, w(p(D)) = wpD+4,D4) = WD+ N
E) = w(D),since DXL NE =D+ n{D U (E\D)) = D.
The corollary is proved.

We denote by II{X, L, @) the set of all operational pro-
positions of the form p(D), where D is an event for
(X,1,@). The system (II(X, L, @), =, 1) will be called
the logic of the sample space (X,1,®). Hwe
Q(X,L1,@d) is any weight function, then w induces a
real-valued function defined on II(X, 1, @) by w(p(D))
= w(D) for every event D (Corollary 1). The use of
the same symbol w to denote both the weight function
and the induced function on II{X, 1, @) should cause no
confusion—one can always tell from the context what
is meant. A function induced on [X, L, @) in this
manner will be called a vegular siate on the logic
X, ., a).

Let D, and D, be events for the sample space
(X,1,@). Clearly,D, L D, if and only if p(D;) L p(D,)
in the logic I1(X, L, @). Thus,if p(D,) L p(D,), the co-
herence condition implies that D, U D, is again an
event for (X, L, @); hence, p(D, U D,) € (X, L, Q).
Since D, € D, U D,, then, using part (ii) of Lemma 4
twice, we have D$+ C (D, U D,)*+. Similarly, D4+ <
(D; U Dy)**. This implies that p(D, U D,) is an
upper bound in the partially ordered set (fli{X, 1, @),=
for p(D,) and p(D,). Suppose that D is an event for
(X, 1, @) and that p(D ;) is also an upper bound for
pD4) and p(D,). Then we have D+ € D3+ and D3+ &
Di* hence Dy U D, &S D+ U D3+ & Dit,and so

(D, U Dy)*+ C Dyt = DLy, that is, p(D, U D,) < p(D3).
This goes to show that p(D, U D,) is the least upper
bound in(II(X, L, @), =) for p(D,) and p(D,).

The above considerations lead us to define p(D,) @
p(D,) = p(D, U D,) whenever p(D,) L p(D,) in the
logic I(X, 1, G). By an easy induction, based upon the
above arguments, we see that if p(D,), p(D,), ...,

p(Dn) is a finite sequence of pairwise orthogonal pro-
positions in the logic I{X, 1, G), then p(D; U Dy U « -+

U D,) belongs to I(X, 1, @) and is effective as the

least upper bound in IX, + , @) of the original se-
quence. Thus, we define p(D,)® p(Dy) ® *+- @ P(D,) =
pDL U Dy U -+ U D).

Lemma 6: Let w be a regular state on the logic
I{X,L,q). For each p(D) € II(X, L, G), w(p(D)) is a
real number between 0 and 1. ¥ E <€ @, then w(p(E)) =
1. Also, w(p(®#)) = 0. Finally, if p(D,),p(D,), ...,
p(Dn) is a finite sequence of pairwise orthogonal pro-
positions in the logic II(X, L, @), then w(p(D,) ®
pDy) ® « -+ &p(D,)) = W(pD)) + W(pDy)) + -+ +
(pD,)).

We omit the easy proof of Lemma 6, If the sample
space (X, L, @) is o-coherent, all of the above con-
siderations can easily be extended to countably in-
finite sequences of mutually orthogonal propositions
in the logic [I(X, L, @) and, in particular, regular
states are countably additive over orthogonal sequences
of propositions in this logic.
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Lemma 7: Let w be a regular state on the logic
li(X,1,@)and let D,, D, be events for (X, 1, @) such
that p(D;) = p(D,). Then, w(p(D,)) = w(p(D,)).

Pyroof: Since p(D,) < p(D,), then D}+ C D4+; hence,
D4+ CD$+4 that is,D4 C D1, Since D, is an event,
there exists an operation £ < @ such that D, € E.
Since E is an orthogonal set, it follows that E\D, &
D3 C D{, that is, D, and E\D, are orthogonal events.
By the coherence condition, there exists an operation
F € @ such that D, U (E\D,) C F. It follows that
w(D{) + WE\D,) = (D) + w(E) — wD,) = w(F).
Since w(E) = w(F) = 1, the lemma is proved.

Suppose that A is a set of regular states on the logic
{X,L,Qq). We shall say that A is a full set of regular
states if the following condition holds: If p(D,),

pD,) € (X, 1, @) are such that w(p(D,)) = w{ H(D,))
holds for every w ¢ A, then p(D,) = p(D,). Thus, to
say that A is a full set of regular states on I1{(X, 1, @)
is to say that the implication relation =on (X, L, @)
can be recaptured merely from a knowledge of A.

Theovem 2: Let A be a set of regular states on the
logic I(X, , @) of the sample space (X,1, ). Then A
is a full set of regular states if and only if the follow-
ing condition holds: Regarding A as a set of weight
functions on (X, 1, @), if x,y € X and if the condition
x 1 y fails, then there exists w € A such that w(x) +
w(y) > 1,

Proof: Suppose first that the given condition holds,
but that A is not full. Then, there exist events D, and
D, such that w(D,) = w(D,) holds for all w € A, but
pD,) # p(D,). Since p(Dﬁ £ p(D,), we cannot have

D3 < D{; hence, there exists x € D4 and there exists

y € D, with x ¢ {y}*. By hypothesis, then, there exists
w € A such that w(x) +w(y) > 1. Now,w(y)=w(D;) =
w(D,). Since x € D4,then{x} and D, are orthogonal
events, so that the coherence condition implies the
existence of an operation E with{x} UD, CE. It
follows that w(x) + w(Dy) = 1< w(x) + w(y); hence,
w(D,) < w(y). Sincey € D, this yields the contra-
diction w(y) = w®,) = w,) < w(y).

Conversely, suppose that A is full, but that the given
condition fails. Then, there exist ¥,y € X such that

x & {y}+, but w(x) + w(y) = 1 holds for all w € A.
Choose an operation E € @ such thaty € Eand let B
denote the event B = E\{y}. We have w(x) + w(y) =

1 = w(E) = w(B) + w(y); hence, w(x) = w(B) holds for
all w € A. Since A is full, it follows that p({x}) = p(B),
that is,{x}++ € B4+, B+ C{x} +. Since y € B+, then

v ©{x} 4, contradicting x ¢ {y} * and proving the
theorem.

We shall call a sample space (X, 1,Q) a Dacey Space?
if it has the following property: I E € @, if x,y € X,
and if E C{x}+ U {y} +, thenx L y.

Theorem 3: Suppose that the logic (X, L1, @) of
the sample space (X, 1, @) admits a full set of regular
states A. Then (X, 1, @) is a Dacey space,

Pyoof: Suppose that E € @, that x,y € X, and that
E S {x}* U {y} +. Define events Band Dby B = E N
{x} +,D = E\B. Now E is the disjoint union of B and
D;hence, 1 = w(E) = w(B) + w(D) holds for all w € A.
Clearly, B C {x} + and D € {y} +; hence, by the co-
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herence condition, there exist operations F,G ¢ @
with B U {x} C FandD U {y} € G. Thus, for all w ¢
A, w(B) + w(x) = w(F) =1 and w(D) + w(y) = w(G) =

1. Adding the latter inequalities gives 1 + w(x) +
w(y) = w(B) + WD) + w(x) + w(y) = 2, that is, w(x) +
w(y) = 1forall w € A, Theorem 2 now implies x L ¥
and completes the proof.

The converse of Theorem 3 is false. Greechie® has
given examples of finite Dacey spaces (X, L, @), whose
logics are even orthomodular lattices,® but whose
logics do not admit any regular states whatsoever!

Theovem 4: Let (X, 1, @) be a Dacey space. Then,
if p(D) € (X, L, @), it follows that (p(D))* = (p(D))’ €
(X, 1, &). In particular, if the logic 1(X, 1, @)
carries a full set of regular states, then it is closed
under the negation mapping p(D) = (p(D))’.

Proof: Let D be an event for (X, L1, 3). We must
find an event B such that (D, D*!) = (B++, B1), that is,
such that B++ = DL, Since D is an event, there exists
an operation E € @ such that D S E. Put B = E\D.
Since E is an orthogonal set, then B & D+. By Lemma
4,B1L C D+t = DL, It remains to show that DL C
B+i, Thus,let x € D4, y € B+, It will suffice to show
that x L Since x € DJL then,by Lemma 4, D &
DitC {xf Slmllarly,B c{yj+. Since E=DUBC
{x}+ U {y}+, the hypothesis that (X, 1, @) is a Dacey
space implies x L y, and the theorem is proved.

Current research in “quantum logic” often requires
that the set of admissible states be not only full, but
also strong.? Thus, we define a set A of regular states
on the logic II(X, L, @) to be strong provided that
whenever p(D,) and p(D,) are propositions in II(X, 1,Q)
such that, for every w c A, o(p(D,)) = 1 implies
w(p(D,)) = 1, then p(D, p(Dz) Clearly, every
strong set of regular states onII(X,L, @) is auto-
matically full. By an argument similar to that used
to prove Theorem 2, one can prove the following
theorem:

Theovem 5. Let A be a set of regular states on
the logic II(X, L, @). Then A is strong if and only if
the following condltxon holds: Regarding A as a set of
weight functions on (X, L, @), if x,y € X with x & {y} +,
there exists w € A such that w(x) =1 and w(y) = 0.

5. THREE EXAMPLES

We now give three examples to show that our tech-
niques can handle not only classical probability
theory, but the probabilities arising in quantum logics
as well.

Example 1

Let D denote a single physical operation with result
set R. Let § be a given o-field of subsets of R, the
elements of § being though of as observable events
for D in the usual sense. It will be convenient (al-
though it is not necessary) for us to assume that if
x € R, then the set {x} consisting of the single result
x is an observable event. Let E ={M,,M,,- -} de-
note a finite or countably infinite partition of R into
pairwise disjoint nonempty elements M ,,M,, - of
the o-field §. With each such E, we associate a
coarsened version D, of the physical operation D as
follows: To execute D, execute D, but record the
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result of Dy as the unique setM,, n = 1,2, that
contains the result of © thereby obtained. We define
@ to be the collection of all such partitions E of R
with the understanding that each £ € @ is to be inter-
preted as the outcome set of the corresponding
physical operation Dg.

Let X=U{EIEc@},sothatXx ={M ¢ § M =}
ForM,N € X,we defineM L N ifandonly if M N N =
@. Thus,M L N if and only if there exists E € @ with
M,N € E and M # N. One easily verifies that

X 1,@) is a o-coherent sample space. Let G =

{{x} xe R}, noting that G is a maximal orthogonal
subset of X, but that—unless R is countable—G is not
an operation in @. Thus, if R is uncountable, then G

is an idealized operation for the sample space

(X, L, Q). Of course, the idealized operation G corres-
ponds to the original physical operation . In an
obvious senge, the idealized operation G is a “limiting
case” of the operations E € @.

Clearly, the events for the sample space (X, 1, Q) are
precisely the subsets D of X of the form D = {M,,
Mgy, --+} where M ,,M,,--- is a finite or countably
infinite sequence of pairwise disjoint nonempty ele-
ments of the o-field F. If N € X, then, evidently,N <
D! if and only if N is disjoint from U {M|M € D} and
N € DXL if and only if N is a subset of U {M|M < D}.

Let G ={{x} |x € R} be the (possibly) idealized
operation in (X, L, @) corresponding to the physical
operation . Note that, for any event D for (X, L1, @),
G tests p(D) in the sense that G € D+ U DL, In this
sense, all of the propositions in the logic I (X, 1, @)
are—at least “in principle”—simultaneously testable,.

Define a mapping f: [1(X, L, @) > F by Ap(D)) =

U {M|M € D} for each p(D) € l1(X, L, @). One shows
easily that f is an isomorphism of the logic II(X, L, G)
onto the Boolean o-algebra §. In particular, for p(D,),
pD,) € X, 1, @),p(D,) =< p(D,) if and only if
ApDy)) € f(p(Dz)) andp D) L p(D,) if and only if
ApD,)) is disjoint from f(p(Dz)). Also, if p(D,),
p(Dz), +++ is a sequence of pairwise orthogonal pro—
posmons in (X, L, &), thenf(p(Dl) ®pD)® - 0) =
Ap@ ) U ApD) U -

Suppose now that (R, ¥, 1) is a probability space, that
is, suppose that 1 is a normed measure defined on the
o-field §. Define a weight function w = w(u) on the
sample space (X,1,3) by w(M) = pu(M) for allM € X.
As always, the weight function w induces a regular
state—also denoted by w—on the logic I1(X, ., @).
Clearly, for p(D) € I(X, L, @), we have w(p(D)) =
g(Af(p(D))). It is easy to see that, in this way, one can
set up a one~to-one correspondence w < ( between
regular states w on the logic I1(X, L, @) and probability
measures | defined on the g-field .

Thus, classical probability theory can be subsumed
by our theory of (generalized) sample spaces by the
simple trick of promoting the classical observable

events to the status of outcomes.

Example I

Quantum logic was born in 1936 with the publication
of Birkhoff and von Neumann's ground breaking
paper.® The appearance in 1963 of Mackey's book on
the mathematical foundations of quantum mechanics?
generated renewed interest in the study of abstract
quantum logics. Mackey has shown10 that a system
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satisfying his Axioms11 I-VI is mathematically equi-
valent to an orthocomplemented partially ordered set
&£, closed under the formation of countable orthogonal
suprema and equipped with a full strongly convex
family of probability measures &. Let (£, &) be any
such system and denote the orthocomplementation on
Lbyer e’. Let X ={e c £|e = 0} and define two
elements e, f € X to be orthogonal,in symbols e L f,
provided that e < f'. Let @ denote the family of all
countable maximal orthogonal subsets E of X. Then
(X,1,0@) is a o-coherent sample space. Leta € &
and define a weight function w_ on (X, 1, Q) by w (e) =
a(e) for all ¢ € X. Denote by A the set of all such
weight functions w_ as a runs through &. Then A is a
full set of regular states on the logic II(X, 1, Q).
Given any ¢ € £, define an operational proposition
qle) eybyqle) =({f e X|f=e},{gecX|g=el) It
is not difficult to verify that the operational proposi-
tion g(e) so defined actually belongs to the logic
M(X,1,qd) and that the mapping ¢: £ = II(X, L, Q) is
an isomorphism of £ onto the logic II1(X, L, G).
Furthermore, we have a(e) = wu( qle)) for all e € £.

Conversely, let (X, 1, G) be any o-coherent sample
space and let A be any set of weight functions on

(X, L, @) which is closed under the formation of point-
wise countable convex combinations. Suppose, further,
that A is a full set or regular states on the logic
(X, 1,R). It follows readily from the considerations
in Sec. 4 of the present paper that, with £ =II(X, 1, @)
and © = A, we obtain a system satisfying Mackey's
conditions. In this way, we see that quantum logic can
be subsumed by our theory of (generalized) sample
spaces.

We now give a specific mathematical example per-
tinent to nonrelativistic quantum mechanies. Let 3

o d
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denote a separable infinite-dimensional complex
Hilbert space. Denote by X the set of all normalized
vectors ¥ € X. Say that two vectors ¥ and ¢ in X are
orthogonal, in symbols ¥ 1L ¢, if the inner product

(¥ | @) vanishes. Let @ denote the collection of all
maximal orthogonal subsets of X. Then (X,1,®) is a
g-coherent sample space. An event D for (X, L, &) is
simply an orthogonal set of normalized vectors in .
If D is such an event, define P, to be the orthogonal
projection onto the closed linear span of the vectors
in D. One proves easily that if A and B are events for
(X,1, @), then p(A) < p(B) in the logic II(X, L, @) if and
only if P, = P, P,. Also, p(A) = p(B)’ in the logic
I(X,1,Q) if and only if P, = 1 — P,. Hence, the logic
(X, 1, Q) is isomorphic to the complete orthocomple-
mented lattice of all orthogonal projection operators
on the Hilbert space 3. This is especially interesting
in view of von Neumann's interpretation2 of ortho-
gonal projection operators as quantum mechanical
propositions. Using Gleason's theorem,13 one can
show that the weight functions on (X, 1, @)—or, what is
the same thing, the regular states on II{(X, 1, G)—are
in one-to-one correspondence with the von Neumann
density operators on the Hilbert space X.

Example III

Suppose we have a device that, from time to time,
emits a particle and projects it along a linear scale,
We consider two physical operations Dy and D, de-
fined as follows: To execute D;, we look to see if
there is a particle present. If there is not, we record
the outcome of D, as the symbol n. If there is, we
measure its position coordinate x. If x = 1, we record
the outcome of D, as the symbol a, while if x < 1, we
record the outcome of D, as the symbol &. Thus, the
outcome of set D, is R; = {n,a,b}. To execute D,,
we look to see if there is a particle present. If there
is not, we record the outcome of D, as the symbol n.
If there is, we measure the x-component p, of its
momentum, recording the symbol ¢ as the outcome of
D, if p, = 1 and the symbol d as the outcome of D, if
p, < 1. Thus, the outcome set for D, is R, = {n, c,d}.
(The reason for our identification of the outcomen of
D, with the outcome n of D, should be clear to the
reader.)

We now build a sample space (X, 1, @) reflecting the
empirical “universe of discourse” represented by the
manual {D,, D,} of physical operations, We take @ =
{R{,R,} and X = R, U R, = {a,b,n, c,d} . We define

1 as usual, by specifying that,for x,y € X, x L »
means x =y, but there exists E ¢ 4 such that x,y € E.
Thus, for example,a L b,but it is false thata L c.
The orthogonality relation L on X can conveniently be
depicted by the graph in Fig. 1. In this graph, the
various outcomes x € X are represented by the nodes,
and two nodes representing two orthogonal ocutcomes
are connected by a line segment. Note that the opera-
tions R, and R, in the manual G appear as maximal
orthogonal sets.

There are exactly fourteen different events for the
sample space (X, 1, Q). However, since p(R,) = p(R,)
and since p{a, b}) = pl{c,d}), there are only twelve
different propositions in the logic {X, 1, &@). Clearly,
the proposition P = p{{ a,b}) = p{c,d}) is confirmed
precisely when a particle has been observed in the
course of an execution of either D, or D,. The pro-
position p(R;) = p(R,) is automatically confirmed by



OPERATIONAL

any outcome. We denote it, in what follows, by the
symbol I. Thus,I = (X, @) € I (X, 1, Q). The propo-
sition p(@) is never confirmed by any outcome. We
denote it, in what follows, by the symbol 0. Thus,
0=(&X)=" clIX,L,0).

We have discussed three of the propositions in the
logic (X, L, @), namely, O, P and I. Clearly, P’ =
pn}) € (X, L, @) is confirmed precisely when one of
the operations P, or D, is executed, but no particle

is observed. We can now display all twelve of the
propositions in the logic II(X, L, @), and the implica-
tion relations existing between them, by the diagram14
in Fig. 2. Note that, for instance, p({a}) = P (if a parti-
cle with position coordinate x = 1has been observed,
then a particle has been observed), but p({a}) £
(p{ch)’ (having observed a particle with position co-
ordinate x = 1, we are not obliged to conclude that its
momentum p, must be less than 1).

Via Theorem 5 and Fig. 1, it can readily be verified
that the logic (X, L, @) admits a strong set of regular
states. Actually, I1{3, L, @) is an orthomodular
lattice.15 The subset II,(X, 1, @) of II(X, 1, @) consis-
ting of those propositions p(D) € I1(X, 1., @) for which
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R, is a test operation form a maximal Boolean sub-
lattice of I (X, 1, @). (Note: I, (X, 1, G) is the “left
half” of Fig. 2.) An analogous relation exists between
R, and the “right half” of Fig. 2.

Note that the least upper bound (or the join) of p({a})
and p{ d}) in the lattice II{X, L, @) is given by p({{a )V
p{d}) = P = p{a,b}) = a,b, c,d},{nj). Thus,p(ia})V
p@d}) is confirmed by any outcome that confirms at
least one of the two propositions p{{a}) or p({d}). Also,
pla}) v p{ d}) is refuted precisely by those outcomes
that refute both p{a}) and p{{d}). To this extent,

p@a}) v p(d}) behaves like the classical disjunction of
the two propositions p{{a}) and p({cf}). However, it is
important to notice that p({a}) v p({d}) fails to behave
exactly like the classical disjunction since there are
outcomes, namely b and ¢, which confirm p({a}) v
p(d}), but which do not confirm either p{a}) or p{d}).
However, the operational significance of this depar-
ture from classical logic is quite clear in the simple
example at hand. We could, of course, form an opera-
tional proposition ({a, d},{n}) € Il which would con-
form in all respects to the classical disjunction of
p{a}) and p({d}); however, the operational proposition
{ a, d} ,{n}) fails to be testable!
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Given a complete orthocomplemented lattice L and a set S of nonnegative real functions on L, sufficient condi-
tions are established that S should fulfill in order that L be atomic, The conditions are investigated under which
L may be represented by the lattice of all closed subspaces of a separable Hilbert space. (As is well known, the
atomicity of L plays an important role here.) Some unsolved problems are pointed out, In axiomatic quantum
mechanics, the lattice L may represent the set of propositions whereas the set of functions S represents the set
of physical states. The conditions imposed on the pair (L,S) then have a simple and plausible physical inter-~
pretation; an important condition imposed on (L, S) is the existence of the “maximal” (i.e., maximally deter-
mined) states which appear in the theory as limit constructions,

1. INTRODUCTION

The validity of the covering law and the atomicity of
the lattice of propositions in axiomatic quantum
mechanics are sufficient conditions that the complete,
orthocomplemented irreducible and orthomodular
lattice of propositions in which any set of pairwise
orthogonal elements is at most countable may be
represented as the lattice of closed subspaces of a
separable Hilbert space. This scheme corresponds
to the generally accepted mathematical formulation
of quantum mechanics.173

In a recent interesting paper, Jauch and Piron? tried
to motivate the validity of the covering law and the
atomicity of the lattice of propositions in axiomatic
quantum mechanics using a nonprobabilistic for-
mulation of quantum mechanics and a new definition
of state. It seemed of interest to show that both of

these conditions can be motivated in a similar way in
the probabilistic formulation of axiomatic quantum
mechanics without using the strong assumptions of
Ref. 4. A report on this subject will be communicated
in a forthcoming paper.>

In the course of the work it seemed interesting to
prove several theorems which are presented in this
paper. These theorems are not employed in the axio-
matic system of Ref. 5; however, they may be of
general interest in quantum axiomatics as well as in
the theory of functions over lattices.

In Theorems 1, 2,and 3, the atomicity of the lattice L
is proved by imposing certain conditions on the com-
pletion of S (in a uniform structure generated in S by
L), where S is a set of functions on L which may be
thought of as representing the states. Theorem 4
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any outcome. We denote it, in what follows, by the
symbol I. Thus,I = (X, @) € I (X, 1, Q). The propo-
sition p(@) is never confirmed by any outcome. We
denote it, in what follows, by the symbol 0. Thus,
0=(&X)=" clIX,L,0).

We have discussed three of the propositions in the
logic (X, L, @), namely, O, P and I. Clearly, P’ =
pn}) € (X, L, @) is confirmed precisely when one of
the operations P, or D, is executed, but no particle

is observed. We can now display all twelve of the
propositions in the logic II(X, L, @), and the implica-
tion relations existing between them, by the diagram14
in Fig. 2. Note that, for instance, p({a}) = P (if a parti-
cle with position coordinate x = 1has been observed,
then a particle has been observed), but p({a}) £
(p{ch)’ (having observed a particle with position co-
ordinate x = 1, we are not obliged to conclude that its
momentum p, must be less than 1).

Via Theorem 5 and Fig. 1, it can readily be verified
that the logic (X, L, @) admits a strong set of regular
states. Actually, I1{3, L, @) is an orthomodular
lattice.15 The subset II,(X, 1, @) of II(X, 1, @) consis-
ting of those propositions p(D) € I1(X, 1., @) for which
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R, is a test operation form a maximal Boolean sub-
lattice of I (X, 1, @). (Note: I, (X, 1, G) is the “left
half” of Fig. 2.) An analogous relation exists between
R, and the “right half” of Fig. 2.

Note that the least upper bound (or the join) of p({a})
and p{ d}) in the lattice II{X, L, @) is given by p({{a )V
p{d}) = P = p{a,b}) = a,b, c,d},{nj). Thus,p(ia})V
p@d}) is confirmed by any outcome that confirms at
least one of the two propositions p{{a}) or p({d}). Also,
pla}) v p{ d}) is refuted precisely by those outcomes
that refute both p{a}) and p{{d}). To this extent,

p@a}) v p(d}) behaves like the classical disjunction of
the two propositions p{{a}) and p({cf}). However, it is
important to notice that p({a}) v p({d}) fails to behave
exactly like the classical disjunction since there are
outcomes, namely b and ¢, which confirm p({a}) v
p(d}), but which do not confirm either p{a}) or p{d}).
However, the operational significance of this depar-
ture from classical logic is quite clear in the simple
example at hand. We could, of course, form an opera-
tional proposition ({a, d},{n}) € Il which would con-
form in all respects to the classical disjunction of
p{a}) and p({d}); however, the operational proposition
{ a, d} ,{n}) fails to be testable!
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1. INTRODUCTION

The validity of the covering law and the atomicity of
the lattice of propositions in axiomatic quantum
mechanics are sufficient conditions that the complete,
orthocomplemented irreducible and orthomodular
lattice of propositions in which any set of pairwise
orthogonal elements is at most countable may be
represented as the lattice of closed subspaces of a
separable Hilbert space. This scheme corresponds
to the generally accepted mathematical formulation
of quantum mechanics.173

In a recent interesting paper, Jauch and Piron? tried
to motivate the validity of the covering law and the
atomicity of the lattice of propositions in axiomatic
quantum mechanics using a nonprobabilistic for-
mulation of quantum mechanics and a new definition
of state. It seemed of interest to show that both of

these conditions can be motivated in a similar way in
the probabilistic formulation of axiomatic quantum
mechanics without using the strong assumptions of
Ref. 4. A report on this subject will be communicated
in a forthcoming paper.>

In the course of the work it seemed interesting to
prove several theorems which are presented in this
paper. These theorems are not employed in the axio-
matic system of Ref. 5; however, they may be of
general interest in quantum axiomatics as well as in
the theory of functions over lattices.

In Theorems 1, 2,and 3, the atomicity of the lattice L
is proved by imposing certain conditions on the com-
pletion of S (in a uniform structure generated in S by
L), where S is a set of functions on L which may be
thought of as representing the states. Theorem 4
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deals with the representation of L as the lattice of
closed subspaces of a Hilbert space.

One of the main conditions implying atomicity of L is
the existence of the so-called “maximal” states. The
concept of a maximal state is, from the physical point
of view, a strong idealization (cf. Footnote 31 and Ref.
5). The probabilistic formulation of quantum axioma-
tics in which the state is defined as a functional on L
permits us to consider the maximal states as abstract
constructs obtained from the realizable physical
states as idealized limit states. They are obtained
through the completion of S in the uniform structure
compatible with the “weak” topology of S. This weak
topology (generated by L) has a simple physical inter-
pretation®: The limit states are probability distribu-
tions which can be approximated for any finite set of
measurements by the physically realizable states.

It is easy to see from the definition (cf. Theorem 1)
that only pure states (extremal points) can be maxi-
mal. Since a pure state represents a pure statistical
ensemble (again an idealization), one could start with
a set S of physically realizable states which contains
no pure states. The pure states are obtained by using
the Krein-Milman theorem in the completion of S.

Taking different subsets of S (the completion of S) as
the set of states for the theory leads to different
mathematical schemes. [c{f. conditions (B), (M) of
Theorem 1, (B,), (M,) of Theorem 2, and (M,) of
Theorem 3]. If one restricts the states of the theory
to probability measures? a structure compatible with
the Hilbert space quantum mechanics in principle re-
sults. If one admits a larger set of “limit states”,
mathematical schemes of different types are obtained.
States which are not probability measures (nonnor-
mal states) are of interest in quantum statistics.8
(Infinite additivity of a state function is, of course,an
abstraction which cannot be verified through physical
experiments.)

2. THEOREMS ON ATOMICITY

Theovem 19=15; Let L be an orthocomplemented
complete lattice. Let S be a convex set of functions
on L with values in the closed interval [0, 1] such that
fora € S,ax(0) =0 a(l) = 1. Let S be the completion
of S embedded in the cube [0, 1]* endowed with the
uniform structure given by the product of the uniform
structures of {[0,1],.,}. This uniform structure is
compatible with the so-called weak topology of S for
which the family of neighborhoods, U, ., forms a sub-
base:

U, {ag) ={a € Slla(@) — agl@)l<e, €>0, ac L}.(l)
Let the following assumptions be valid:

(A) to everya € L, a = 0, there exists an @ € § such
a(a) =1,

(B) a€f, a(@)=1fora subset, {a,}, of L implies
a(zy\ay) =1,

(C) facsl abe L, a<b,then a(a) = 1 implies
(Y(b) = 1,16

(M) Let R* be the set of all extremal points of 5. _
Then all elements of R* are maximal elements of §
(= z) with the (not necessarily antisymmetric) partial

ordering relation < ; being defined as follows: For
a,f€8 a=,8 <> a(a) =1 implies g(a) = 1.
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In defining E (@) ={a € Lla(a) = 1}, we can rewrite
this definition in the following form:

Fora,8 €5, a=,B<« E (@)CE,@). (2)
(We want to stress once more that, in this context, by
a “partial ordering” relation we mean a reflexive and
transitive relation, which, in general, need not be anti-
symmetric, i.e., E,(a) does not determine o uniquely
in a general case. An element » of S is then maximal
inS(=g) if and only if m <; @, o € §, implies a = mn.)

We define further: S{(a) = {a € Sla(a) = 1}, Ri(a)
:{m ER+!/7Z (a) £ 1}.

Then the following statements are true:
@ R™ is not void. For any a # 0, RY(a) is not void.
() L is atomic.

(0I) There is a one-to-one correspondence between

the elements m of R* and the atoms e of L, which can

be defined as:
e, —m, ifE @ ={acLle,<d. (3)

Any extremal point = is uniquely determined by the
set E | (m).

(V) § = coR*, Si(a) = coR}(a), where the symbol co
denotes the closed convex hull.

(V) E{(n)is an ultrafilter in L for any extremal
point m of S. It also follows that assumption (M) is
more stringent than the assumption of atomicity of L
[(A), (B), and (C) being valid].

Proof of Theorvem 1: S is a convex set. Taking S
as the generator of the positive cone!3 Cg in £, we
define a partially ordered linear space £ as a direct
sum:

£ =Cg4 + (—Cy). (4)

Let us denote the elements of £ by x,y, etc. The ele-
ments of L are functionals on S defined by a(o) = a(a).
With the natural definition x(a) = ;2s ¢;a;(a) for x =
;27 ¢;0;, L becomes a total family of linear func-
tionals on £ defined by a(x) = x(a). [For y = c,x; +
CoXy, a(y) = y(a) = c1x1(a) + cyx,(a) = cqalxy) +
c,a(xy).] Therefore, £ becomes a locally convex
Hausdorff linear topological space by introducing the
weak topology 7’ generated by the subbase of neigh-
borhoods:

U, (xg) =1{x € £llalx) — alxy)l < e, €> 0}. (5)

T’ induces in S a topology 7, the weak topology of S.
Its subbase is obtained by taking only elements of S
in (5).

£ is a uniform space with a unique translationally in-
variant uniformity ‘W', generated by the subbase of
vicinities ‘W, _, )

w:z,e ={(x’y) e L X £||a(x)— a(y)l < €, € > 0}.

Therefore, we can form a completion of £ in W', say
ﬁ, which also is a locally convex Hausdorff linear
topological space. In the same way, we obtain a com-
pletion of S, say S, in the uniformity W induced in S by
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‘W’. Let us now denote the topologies in £ and S by
T and T , respectively.

£ is densel7 in £(7') and S is dense in 5(7).

In the following text we denote the elements of S by
o,B,...and the elements of £ by x,y,---.

The elements of L are naturally continuous functionals
on £. The seminorms generating the locally convex
topology in £ are obtained by the unique continuous
extension of the seminorms generating the topology

7/ in £,13 These extensions are equal to |a(x)|, where
afx) is the continuous extension of the functional

a € L from & to £. Extending L on £ in this way, we
may consider any @ € L as a continuous linear func-
tional on £, 7’ is then again generated by the family

of linear functionals L.18 We have (1) =1, @(0) =0
for any a € 5. S evidently is a convex set. Accordmg
to proposition (A) of Theorem 1, St(a) = @ for any
ac L, a= 0, The continuity of a E L also implies
that S (a) is closed in £ and closed in S for any a € L.

One can prove that S is compact in 7'.19 This can
easily be verified by embedding S into the space ¥,
i.e., the space of all functions on L having their
values in the interval [0,1]. ¥ may be represented
as the (Tychonoff) cube [0, 1]¥,i.e., as the direct pro-
duct of {[0, 1],}, @ € L. In the direct product topology
(this topology “extends” 7 to ¥), ¥ is a compact uni-
form space; since S is complete in J, it is closed and
hence compact.l! This result completes the proof
since the closure and the completion of S in § and in
£ are identical.

It follows that St (a) is compact in T for any a € L.
Let us denote by R? the set of all extremal points of
S, Then we conclude from the Krein-Milman
theorem13 that:

(a) R+¢¢,
(b) S = coR*,
(¢) ) = @forany ac L, a = 0, with R} (a) =

fne R]"[m(a) =1},
and
(d) Si(a) = coRY(a) for a = 0.

Now it is easy to conclude the proof. The set E, (@) is
evidently nonvoid, and we have from (B) and (C) that
for any a € S El(a) is a filter in L. Let us denote
by A[E(2)] the greatest lower bound of E (@).
Assumption (B) also implies that

A[Ey(@)] € E4(2) and thus E (@)
={ae LIA[E{(@)]= a}.

It follows from assumption (M) that, for every m € R,
A[E;(m)]is an atom in L, Since if A [E (m)(] is not an
atom, there existsana € L, 0< a< A E'El m)] and an
ac8, o =m,with a{@) = 1. Thus a € E;(a), whence
[from (C)IA[E (n)] € E (). Since a < A[E(n)], E{(n)
is a proper subset of E;(a) which contradicts (M).
Thus A[E4(m)] is an atom,

Since, for a = 0, there exists an extremal point 7,

m(a) = 1,there also exists an atom ¢ < a,to any a € L,
a # 0,namely e = A [E;(m)]. This proves that L is
atomic.
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It is evident that, for an extremal point =, E(m) is an
ultrafilter. Since if E,(n) is a proper subset of a fil-
ter F in L, then there exists a b € F guch that b is
not comparable with e = A[E{(n)]. Hence b A e = 0,
which is impossible., However, not every ultrafilter
corresponds to a state, since generally the intersec-
tion of all elements of F can be equal to 0, i.e,, F
need not be generated by an atom.

We have seen that, to any extremal point m of § there
exists an atom e such that E () = {a € Lle < a} On
the other hand, to any atom e there exists an m for
which m(e) = 1 and

E{m)={ac Lle=a}

since for any other b € L, e Ab = 0.

Any = is uniquely determined by the set E (»)
[assumption (M)]. Thus there exists a one-to-one
mapping of R* onto the set of atoms of L. Assumption
(M) is evidently more stringent than the assumption
of atomicity of L. Since if L atomic, the set E, (@) is
maximal in S(= ;) for those a € § for which there
exists an atom ¢ with the property a(e) = 1 [owing to
(B) and (C)]. However, one cannot prove, without
further assumption, that to any extremal point of §
such an atom exists.

Remark: It is clear that the conclusions of the
theorem remain valid if the condition (B) is replaced
by the following weaker condition:

(B’) If, for an extremal point m of S, m(a,) = 1 for
every element of a subset of L {a ,then m (pa,) = 1.

Theovem 2: Let S denote the set of all probability
measures in 5. Let the condition (A) of Theorem 1 be
valid and the premises (B), (C), and (M) be replaced
by the following weaker conditions:

(By)a € S}, a(a,) = 1 for a subset {a,} of L implies
a(ja,) =

(Cl)a S S

a@d) =1,

(Ml) Any element of R*N §, is a maximal element of

S(=p)

However, let us add the following assumption:

,abeLl a=<b,and d(a) =1 implies

(H) If R{(a) is not void, it contains a probability mea-
sure,i.e.,Ri(@) NS, # @

Then the conclusions (I), (I1), and (IV) of Theorem 1
are valid and the conclusions (IlI) and (V) are changed
as follows:

(i1, ) There is a one-to-one correspondence between
the elements » of R* N §, and the atoms e of L, which
can be defined as e, m, if E{(n) ={a € L| en= at.
Any extremal point = of S wh1ch is a probability mea-
sure is uniquely determined by the set E  (n).

(Vy) E{(m) is an ultrafilter for any extremal point

m of S which is a probability measure. Assumption
(M) is more stringent than the assumption of atomi-
city of L (the other conditions being valid).

Theovem 3: Let all the premises of Theorem 2
except (M) be valid and let us replace (M,) by the
following assumption:
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(M) all elements of R} N §, are maximal ele-
ments of SP(SE). Then all conclusions of Theorem 2
remain valid [if (M) is replaced by (M) in (V,)].
(Note that m € R* N S, is now uniquely determined by
E;(m) only in S,.)

Proofs of Theorems 2 and 3: The proofs follow
from the proof of Theorem 1. The main difference
is that, via the premises of Theorems 2 and 3, the
sets E, (o) are proved to be filters only if o is a
probability measure. The relevant extremal points
in the proofs are then elements of S .

Theorem 4: Let B(H) be the algebra of all bounded
linear operators in a separable Hilbert space H. Let
Sy be the set of all normal positive linear functionals
of norm one on BG(H). Let ®(H) be the lattice of all
orthogonal projectors in H. Let S be a set of positive
linear functionals of norm one on ®(H). The functions
|P@)| = la@)|, P € ®H), a € 8 form a total family
of seminorms on $§ and generate a uniform structure
in 8 (cf. Proof of Theorem 1). Let $,the completion
of S in this uniform structure,be equal to S, the
set of all positive linear functionals of norm one on
®(H).

Then the following statements are valid:

(a) If there exists a countably infinite set of pairwise
orthogonal elements in L, the structure of (L, S) of
Theorem 1 is incompatible with the structure of
(®H), S) (dimH = w); if every set of pairwise ortho-
gonal elements in L is finite, the structure of (L,S)
is compatible with the structure of (®(H), 8) (dimH <
©).

{b) The structure of the pair (L,S) of Theorem 3 is
compatible with the structure of (P(H), 8) [i.e., (L, S)
can be, under additional conditions, represented as
the familiar Hilbert space scheme even if dimH = o].

We need a few Lemmas to prove Theorem 4.
Proof of part (a) of Theorem 4:

Lemma 1: Sp is not compact in the weak topology
generated by ®(H).

Proof: Let us denote by 7, the weak topology®4
generated by ®(H) in ®’ the dual of ®(H). The pro-
position “Sy is 7,-compact” is equivalent to the pro-
position “Sy is 7,-closed in ®’” since S, is a subset
of the w*-compact2° and hence 7,-compact unit ball
of ®'. Sy is w™ -dense21-22 and hence 7,-dense in S,
the set of all positive linear functionals of norm one
on ®(H). 5, is compact in the w* -topology23(® and
hence is compact in 7,. Thus Sy is 7,-closed and is
the closure24-25 of S,. Thus S, is the compactifica-
tion of Sy, i.e., the completion of Sy in the uniform
structure compatible with 7,.

On the other hand, it is well known (and may be seen
also from Lemma 2) that there exist nonnormal
functionals in S,. Hence Sy # Sy; Sy is not 7,-closed
and noncompact. QED

For completeness, we recapitulate some known facts
in the following lemma:

Lemma 2:
(1) All extremal points of Sy are extremal points of
Sy
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(2) There exists an extremal point of §H in §H =Sy,
i.e.,a nonnormal extremal point,

Proof:

(1) the proof follows from the lemma26(2) [cf. also
Refs. 23(b), 26(b)]: Let G be a *-subalgebra of ®(H)
containing unity and ¢ a positive linear functional
majorized by the functional w,(T) = (x|Tx). Then
there exists an element 7' in the commutant of @ such
that o(T) = w,, (T) =(T'x| TT'x). [For @ = ®(H), the
commutant is the set of scalars.]

(2) A cyclic representation of ®(H) is irreducible if
and only if its generating positive functional is ex-
tremal,23(p) The only irreducible representations of
®(H) in a separable Hilbert space are isomorphisms
of the algebra B(H) itself (Type 1) or of the quotient
algebra ®(H)/I, (Type 2), where I, is the norm-~
closed two-sided ideal of all compact operators,23(c)
A concrete representation of Type 2 was constructed
by Calkin.27 The positive functional generating a
representation of Type 2 is not normal, since it annu-
lates all projectors of finite rank and hence cannot be
of the form

w(T) =&l Tx), x¢€H,
There is a one-to-one correspondence m, < €,, be-
tween the atoms e of L = ®(H) (i.e., projectors of
rank one) and extremal positive functionals in S, of
the type m(T) = (x| Tx) (the “pure states”), defined by
the equation E ;(m,) = {a € L |e,, < a}. Thus we cannot
have a one-to~one correspondence between the atoms
of ®(H) and all extremal points of § y defined by the
same relation. Indeed we see the following:

Lemma 3: Condition (B) is not satisfied in S ;.

Proof: Let us denote an extremal point of S,
which generates an irreducible representation of G(H)
of Type 2,by ¥. ¥ is a nonnormal functional. ¢(P) =1
for any projector P € ®(H) belonging to a subspace
whose orthogonal complement has finite dimension
(finite additivity of /), Let us take such a projector
P and a sequence of projectors of finite rank P;,

P, =P, }/Pi = P. Let P/ and P’ denote the orthogonal

complements of P, and P, respectively. Then ¥(P;) =
1, for every i, However,AP/ = P’ is a projector of

1
finite rank so that \1/(/1_\Pi’) = 0. Thus (B) is not ful-

filled in S;. Hence our axiomatic formulation is not
compatible with Hilbert space quantum mechanics if

dimHd = .

We remark in concluding that the axiomatic scheme
of Theorem 1 is compatible with Hilbert space quan-
tum mechanics if the dimension of H is finite, since
then S; = S, and condition (B) is fulfilled in S,.
This conclusion can be seen as follows: If dimH < ©,
any positive functional on ®(H)is normal since in
this case ®(H) is a finite-dimensional Banach space.

Proof: In a finite-dimensional space, any locally
convex topology is equivalent to the norm topo-
logy.23(d) Hence any norm-continuous functional on
®(H) is ultraweakly continuous. Since every positive
functional on ®(H) is norm continuous, it is ultra-
weakly continuous and hence normal.26(®
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It is clear that L can be represented by ®(H) in this
case only if there exists at most a finite set of pair-
wise orthogonal elements in L.

Proof of part (b) of Theovem 4: It is easy to check
that all premises and conclusions of Theorem 3 are
valid with L = ®(#H) and S = S, since then! §, = S,.
Hence the structure of (L,S) is compatible with the
structure of (P(H), 8).

Remark: For S we could take, e.g., the set of all
“mixed” states of Sy if we wish to start with a set of
“ physically realizable” states which contains no pure
states (corresponding to the idealization of pure en-
sembles).

3. COMMENTS AND REMARKS

We note that the orthocomplementation of L is not
needed in the proof of Theorem 1. It is, however, in-
dispensable in Theorems 2 and 3 for the definition of
3,.

In proving Theorems 1, 2,and 3, we did not impose the
condition of finite additivity on the elements of S. In
physical applications, however, we would postulate
this property (or even o-additivity). In that case,all
elements of S would be additive functions on L.

An example of a couple (L,S) satisfying the premises
of Theorem 1 is provided for instance by a physically
plausible axiomatic system, constructed in analogy to
Pool's axiomatic system,28 with the following
changes: S need not be o-convex but only convex, the
elements of S need not be probability measures but
are additive functions on L,and L is a complete
orthocomplemented lattice. The lattice operations
are uniquely defined by the relations

Sl(Aa) = ﬂSl(ay) and So(\/a) = USO(ay )
where S,{a) ={a € Sla(a) = 0}. [In Pool's axiomatic
system,a=< b, b = a<::>a_b anda<b <= S5,(a) &
S,0) <= S ( ) € Sy(a).] L is then orthomodular S0
that every a cSis an increasing function on L and,
furthermore,29 a <= b < afa) = ob) for every a €
S. Hence we can prove (cf. Proof of Theorem 1) that
any @ € S is an increasing function on L. We have
then the equivalence

asb <> St(a) S ST0) <= a(a) = ald)

for every « < §,

The validity of assumptions (A), (B), and (C) follows
easily. Assumption (M) evidently does not contradict
the other conditions.

In the physical interpretation (cf. Refs. 4 and 5) the
lattice operation A plays a role analogous to the logi-
cal conjunction and the partial ordering relations <
in L plays the role of implication [we note, however,
that = does not denote a logical implication in L (<)
but an empirical one]. This interpretation motivates
the validity of (B) for any o € S (the completion of S)
which may be accepted as representing a state in the
abstract setting of the theory (if the propositions a,
are true for every y then the proposition A a

true).30 We note that if S represents the physmally
relizable states, S is the greatest set whose elements
could at all be meamngfully taken as the abstract
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limit states. In Theorem 1, we postulate the validity
of (B) for S i.e., we take all elements of S as potential
“states”; in Theorem 3 we considered only states
which are probability measures. Theorem 2 is evi-
dently not of much interest from the standpoint of the
physicist, since conditions (B) and_(C) are postulated
inS »» whereas the maximality in S is postulated for
elements of R* N §,. The atomicity of L is deduced
by imposing certain conditions on the completion of S
(in the uniformity generated by L). This procedure
has the following physical significance: We postulats
that the structure of (L, S) is such as to admit the in-
troduction of some limit concepts which naturally
arise as useful abstractions in our way of physical
thinking, such as the concept of a maximal state, i.e.,
maximally determined state.31

The results of Theorems 1 and 3 may then by physi-
cally interpreted as follows: We can introduce into
our abstract scheme the concept of maximal state
only if we use an atomic L, i.e., if we introduce the
idealized “atomic” propositions in L. In Ref. 5, the
connection between the atomicity of L and the maxi-
mality of states is further analyzed.32

It is interesting to note that the conclusions of
Theorem 2 are valid whether we postulate the maxi-
mality of elements of R* N Sp in § or in Sp The
main difference between Theorems 2 and 3 is that, in
the first case,m € Sp is uniquely determined by £, (n)
in S whereas in the second case it is uniquely deter—
mined by E (n) only in S,. Whether (L,S) of Theorem
2 can be represented as a Hilbert space scheme can
not be definitively decided since little is known on
the properties of nonnormal functionals in S;,. As
was seen in the proof of Theorem 4, condition (B) is
not generally valid in S;;. On the other hand, this
condition holds in S (We have S, = Sy!) 1tis,
however, not clear whether E () is a filter for a
nonnormal o, whether the extremal points of S, are
maximal in s 11> OF what other maximal elements

exist in S . One can easily prove that extremal
points of S are incomparable [in S H(< £)] with non-
normal extremal points of Type 2.

Proof: For any extremal point m of S, there exist
projectors of finite rank for which »(P) = 1, m(1 —
P) = 0. All such projectors are annulated by any non-
normal functional m’ of Type I, i.e.,m’'(1 —P) = 1,
However, little is known about the properties of non-
normal extremal points of Type 1. Thus we cannot
prove the maximality of pure states of S, in S;; nor
make a comparison of nonnormal functionals in S
(=) in general.

Thus two mathematical problems arise in the Hilbert-
space theory:

(1) Is the set E,(a) a filter for a nonnormal functional
in 57

(2) What are the maximal elements of S, (=5)?

Note added in manuscvipt: To make the physical
interpretation of the premises of Theorems 1-3
more plausible, we note that the somewhat unphysical
condition of completeness of L may be replaced by
the following weaker condition: (X) to every set
{ai} C L of pairwise orthogonal elements a; of L, the
lowest upper bound \i/a,- exists.
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Condition (X) implies, together with the orthocomple-
mentation and the separability of L the completeness
of L (cf. Zierler33(2)), The physical motivation of (X)
is evidently much clearer than that of the complete-
ness of L, the meaning of (X) being the following: To
any countable set of mutually exclusive propositions,
the proposition “ay or a, or --.” is an admissible
physical proposition.

Similarly the condition (B;) in Theorems 2 and 3 may
be replaced by the following condition pertaining only,
to finite sets of L:

(Y)abel, ac§, a@=1,
ap)=1implies a(a Nb) =1

or alternatively a(a) = a () = 0 implies a(aV b) =
0.33(0)

JENC

The latter condition may be loosely interpreted as
follows:

If, in a state o, one gets with certainty a negative
answer fo both of the questions a and b, one also gets

W}th certainty a negative answer to the question “a or
b”,
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In this paper, four distinct ideas are combined, which under a wide range of circumstances can give very rapidly
converging series expansions for functional integrals. (1) Expansion of the functional being integrated in func-
tional Taylor series. In the familiar case arising in quantum statistical mechanics, that of the Wiener integral
of exp[ — Iv(x(8))dt], V(x) being the perturbing potential, this is equivalent to expanding the characteristic func-
tional of the probability functional of V{x(¢)) in central moments of V(x(¢)). The lowest-order term of the series
is the approximation obtained by Feynman and Hibbs through a variational method. (2) Transfer of the harmonic
term of the potential, when the functional integral is the quantum-statistical density matrix (Green's function of
the Bloch equation), to the weighting function. This transforms the functional integral from a Wiener to an
Uhlenbeck—-Ornstein integral. The formal expressions for the terms of the expansion are somewhat more com-
plicated, but they can be worked out,and the result is a great improvement in the speed of convergence of the
series with decreasing temperature and/or decreasing relative magnitude of the anharmonic part of the poten~
tial. (3) “Reservation of variables” in the integration. This amounts to breaking the averaging process down
into an average over subsets of the distributed random function (conditional average),followed by an averaging
of these averages. Any step of this kind (it may be repeated within the subsets, etc.) gives an improvement

of accuracy. (4) When the quantity being evaluated through functional integration is the partition function, the
device introduced by Feynman and Hibbs, of interchanging the functional integration with the integration of the
Green's function over the equated initial and final configuration-space points, may be combined with the above
techniques. This eliminates one integration in the terms of the expansion and seems to improve accuracy at
the same time. The general series obtained is correlated with more conventional operator techniques of quan-
tum-mechanical perturbation theory, in order to answer the perennial question, does the path-integral method
bring with it anything that could not be derived by other methods ? It is in some sense a Feynman-Dyson expan-
sion of the Green's function, but one that is further modified mathematically in a way characteristic only of the
path-integral point of view, and which, moreover, improves its accuracy. It thus appears unlikely that the re-
sult is merely one of standard type disguised as a functional integral result. Sample numerical calculations
are given to assay the accuracy of the methods, which are shown to compare very favorably with the traditional
approximation of finite subdivision of the time interval.

the elimination of units, see Appendix A),

A. Introductory Formulation

Inthis and subsequent papersweaimtogive adetailed
presentation of methods of relatively recent exploita-
tion in the evaluation of functional or pathintegrals.?!
These methods consist of various combinations of
four devices,which can give cumulative improvement
in the accuracy of the approximation. One of our im-
portant sources is in the work of Feynman and Hibbs
in the tenth and eleventh chapters of their book on
path integrals in quantum and statistical mechanics.?
It is in their treatment that one can find, in a brief
table (p.286), evidence of the surprising accuracy of
a certain approximation they proposed. Yet the ex-
pression of this approximation is only the first term
of one of the series we discuss here,and can, more-
over,be improved even without taking any higher
terms. It therefore seems in order, particularly in
view of the variety of devices that can be employed,
to present a systematic development and formulation
of such methods at this time.

We start with a summary of the formalism of func-
tional integrals, somewhat adapted to our own pur-
poses. A fully explicit, “constructive” even though
somewhat symbolic, definition of the integral of a
functional f{ x(-)} of a function x(¢) is2-6

1) = [As(R P} T ax(r). (1)

The integral is a multiple one, with respect to the
continuum of variables x(¢’) obtained by letting ¢’
range through the interval 0 < {'=< ¢;the limits of in-
tegration are usually + ©. The functional P{x(+)} is
a weighting functional, and I1 denotes a product over
t' of differentials dx(¢’).

To become physically and mathematically interest-
ing,the above has to be specialized. Our concern is
mainly with I(f) as a solution of a certain partial
differential equation, or something closely related to
such a solution. The equation is that of Bloch or
Schrédinger in dimensionless units (for details of

2
%:(%:TZ—V@ v =Hy, (2)

real { giving the Bloch equation and imaginary ¢ the
Schrddinger equation. The functional integral

K(x(8),x,(0)) = f exp?— j: [—;(d—;%’—» 2+ V(x(t’)i’% at’
% 8(x(B) — x,(8))5(x(0) — x4(0))
dx(t’)
o=t'=p (2mH1’)1/2° ®

is the Green's function at ¢ == 8 of Eq.(2) for a unit
source located at x, when { = 0. Here the weighting
functional is given by

O} = expl— (2L (@A) gy -1/
PO} = exP[ 02 (dt' > dt} 0= 21O

6t’ being the limit of a subdivision of the { interval in
the mathematical process underlying the symbolic
form (1). The functional being integrated is

Ax()} = exp(— [2 V(x()dr)
x 8(x(8) — x,(8))6(x(0) — x,(0)).  (5)

A somewhat new notation has been introduced in Eq.
(3), which will be much utilized for compactness of
expression in our ensuing discussion: that of append-
ing subscripts to a function at a particular value of
the independent variable. If x(f) is the value at time

t of the function x, functional integration involves in-
tegrating over a range of such values [(—,®) in the
present case] for each fixed t. But one would like a
way of denoting a particular, fixed (or parametrically
variable) value of x(¢) which would distinguish it from
a value of the different variable x(¢’) (where = ¢').
This we do by retaining the identifying argument ¢
while at the same time fixing the value by a subscript.
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Thus x,(#) denotes the value x, (some number) of
x(t) regarded as a variable for fixed {. The quantities
x,(t) and x,(¢’), whent =¢’, are (for example) num-
erically equal but distinguished by virtue of being
values taken on by two different variables. [This
feature is not utilized in Eq. (3), but will be later on.]

Thus K(x,(8),%,(0)) denotes explicitly and quite com-
pactly the value taken on by the Green's function at
time B at the point x,,for a source at time zero loca-
ted at x,. But the greatest usefulness of the new nota-
tion lies in the fact that it can convey this meaning in
the context of an equation in which x(0) and x(8) play
the role of variables of integration as well as taking
on the special values x, and x,.

Essentially all important forms of the Wiener integral
(Bloch equation) and Feynman integral (Schrédinger
equation) can be obtained from Eq. (3).

When the weighting functional is real, we shall assume
it to be normalized to unity for the appropriate in-
terval of ¢, say,

Pl _IL,

and it has the properties of a probability density in the
space of functions x(+). The functional integral over
this interval would then be an expectation value

I(f)ZE[o,t] [F1; (n

the symbol [0,¢] of the interval 0 < ¢’ <t is appended
as an often useful indication.

dx(¢)=1,
2

(6)

Conditional expectation values are often resorted to;
in fact,the above functional integrals are really con-
ditional expectation values, because the probability
density is in fact always specified as a conditional
one. The Wiener process (and, at least formally,the
Feynman “process”) is Markovian, and P{x()} is the
limit of the probability of a Markov chain. For an
interval 0 = t'= ¢,

Pix()} = Lim P(x(t)[x(t,)P(x(t,) |x(t, 1) - -

x Px(t,)| x(0),  (8)

where
Px(t') |x(8)) = [2a(t" — )]~ 1/2
x exp{ — [x(t") — x(t)]2/2(t' — )} (8"

and x(0), x(¢,), x(t5), - . ., x(¢,), x(¢) are values at a finite
set of successive time instants of the function x(¢).
The limit # = « is taken for increasingly fine subdivi-
sion., The product of conditional probability densities
on the right-hand side is the joint probability density
of x(¢1),%(ty), .. .,x(t) given x(0);hence, in reality,
P{x(-)} is also a conditional probability density or,
explicitly, P{x(-)|x(0)}.

The result of Eq. (3) is unchanged if the factor 6(x(0)
— x4(0)) and the integration over x(0) are omitted
while using the probability conditional on x(0) = x,(0).
In fact,the Green's function is a conditional value:

Kl @), 5000 = [P0 15O} exp(— [ vstepar)
X 8(x() — %, BN J1_, ax(t)

O<+ /=

= E(O. 8] ‘:exp ('—‘ f(? V(x(t,))dl">
X 8(el6) =1 (A0 (9)
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The omission of integration over x(0) is indicated in
the subscript to the I1 sign and in the interval notation
appended to E.

The quantum mechanical pavtition function of a parti-
cle in the potential V(x) at a temperature g1 is
Z() = [Kxo(8),%o(0))dx,. (10)
In writing this formula, we are able to take full advant-
age of our new notational device. Equal values of x{¢)

at different times, x4(0) and x,(8),are denoted by equal
subscripts without losing the distinet time indications.

B. Methods Used and Outline of Results Obtained

The techniques discussed in this paper consist of: (A)
the reduction of the infinite-dimensional functional
integral expression,which is of symbolic value only,
toa series of explicitintegrals of finite order; (B) and
(C),two devices which improve the accuracy of the
results, to be further described below; and (D) the use
of a new probability distribution in the case of the
partition function.

The result (A) is obtained by Taylor expansion of the
exponential in Eq. (9) after adding and subtracting the
expectation value of the exponent, in the exponent.!
The resulting series generalize the result obtained
by Feynman and Hibbs (Ref. 2, Sec. 10-3 and Chap. 11)
in terms of a variational argument, their result being
the first term of the series. The convenience of the
series lies in the fact that each term can be evaluated
in terms of a finite number of quadratures.

The series may be compared with that of Gel'fand
and Yaglom [Ref. 3, Eq. (4. 10)]. The latteris, in effect,
an expansion of the functional being averaged, Eq. (5),
with respect to the random function x(.). Ours is an
expansion with respect to the random function V{x(-))

— E[Vx(-))].

Somewhat more closely related is the series used by
Kac (Ref. 4, p. 168) to prove that the Wiener integral
of exp[ — [ Wx(¢t"))dt'] satisfies the Bloch equation.
However, Kac's expansion does not lend itself to
accurate practical evaluation, because (cf. Sec,IIIA
below for details of our method) it does not separate
out the factor exp{E[ — | V(x(t')) dt’']} beforehand;
hence the higher terms are ordinary,not central,
moments, which decrease more slowly than the latter.
In the expansion according to central moments, the
leading term exp{E[ — [ V(x(#'))dt']} is already in
many cases an excellent approximation to the exact
result,as was realized (cf.the first paragraph of this
article) by Feynman and Hibbs.

We can also compare series methods in general with
the classic method of approximation based on the
rigorous definition of the functional integral. This
uses a finite number, say N, of intervals for the time
subdivision,i.e., stops at a finite stage of the limit
process of Eq. (8). In this way an N-fold integral is
obtained, but not a series;if an improvement is de-
sired, the calculation must be repeated. Various re-
finements of this technique have been given.7.8 We
shall see that the lowest-order approximation of the
series method is as accurate as the result obtained
with quite large values of N by the time-subdivision
method. It also has the advantage of the natural ana-
lytic structure of its terms.



APPROXIMATE FUNCTIONAL INTEGRAL METHODS. I

The special devices referred to under (B) and (C) are:
(B) The quadratic term in V(x),or part of it, may be
split off and incorporated in the weighting function
(4).1 The result is again a Markovian probability-
density functional, whose univariate propagator
P(x(#') | x(#)) is the well-known Uhlenbeck—Ornstein
probability density. Functional integrals with this
weighting, Uhlenbeck —-Ornstein integrals,are not much
more difficult to carry out than Wiener integrals,be-
cause of the simplicity of form of the Uhlenbeck~
Ornstein function.? If the quadratic term is appreci-
able,a considerable gain in accuracy is obtainable,
Thisis evidentfrom thebasicfact that the Uhlenbeck-
Ornsteinintegral has in effect a more advanced start-
ing point, this advance over the Wiener integral being
measurable by the fact that unlike the latter it is
exact if the potential is purely harmonic. An addition-
al property to be expected from the Uhlenbeck-
Ornstein weighting is much greater accuracy at low
temperatures (8 >> 1). This is because of the greatly
reduced dispersion of Uhlenbeck—Ornstein paths
compared to Wiener paths (for details, see Sec.IIA).

(C) As Feynman and Hibbs (Ref.1, Chap. 10) proposed,
we may reserve a parameter of the functional x(-),
namely its time average ¥,from the expectation
value at first, integrating over ¥ only after carrying
out operation A, the expansion in central moments.
This improves the accuracy because it corresponds
to carrying out operation A with respect to suben-
sembles of lower dispersion, which are then recom-
bined after the performance of the various operations
defined above. (If we did this with respect to a com-
plete set of parameters defining the path, instead of
just %, we would, in fact, have an exac! result.)

(D) In a rather different category from the preceding,
because it applies only to the partition function, be-
longs another technique due to Feynman and Hibbs.
They observed that the equating of x(8) to x(0) in the
partition function [Eq. (10)] gives rise to a family of
paths of a remarkable and useful periodicity proper-
ty. We show that this can be forraulated in terms of a
new probability space. The integration over the
equated end points xO(O ) and x,(g) is carried out be-
fore the operation E in Eq. ( 3 This operation com-
bined with E can be mampulated into the form of a
new kind of expectation value, so that the partition
function is itself an expectation value, apart from a
factor.

2. METHODS FOR FUNCTIONAL INTEGRALS OF
THE FORM exp[ — F(x())] IN GENERAL

A, Expansion of the Integral of an Exponential Func-
tional in Terms of Central Moments of the Exponent

(“Operation A”)

We evaluate the quantity

I =E [exp(— fV(x(t'))dt')].

No specification need to made of the form of the pro-
bability weighting. Also,no specification need be
made, as yet, of the time interval involved. Certain
conditions on the expectation value, such as a fixed
x(0),fixed %, etc., may be implicit in the expectation
operator E,

(11)

We now multiply and divide by
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exp[— E< f V(x(t’))dt')] (12)

1 :gexp[— E<fV(x(t'))dt’>] E(exp — l:fV(x ))dt’
- E(f Vix (t’))dtﬂ{). (13

We also expand the second\‘xponentlal and take the
expectation values term by term. The resulting
terms are central moments of the random functional
JV(x(t"))dt'. Putting

V. (x(8)) = Vx(t)) — E[ W(x(8)] (14)
and
[( Jv, (x ))dt> jl
we have

M(k)[
I= exp<— E[fV(x(t’))dt’]) 2 (_.1 M®[y ], (15)

(14')

The point of this expression is that all terms involve
only a finite number of integrations. This maybe seen
as follows: Apart from multiplicative factors such as
powers of E[[V_(x(¢'))dt'], each moment consists of
terms like

E[(fVc(x(t’))dt’> l]

= E[f- e JV e )V (x(E ) - Y, (x(e,))dt - - -dtl]

= /.. fE[V(x NV, (x(t ) - Vc(x(tl))]dtl---dtl.

(16)
But the expectation value inside the integral sign is
given by

E[V (x( )V (x(t,))- - V,(x(2)]
= [-or [P(el(ty),2(t5), -+, x())V, (x(2)
XV (x(t5)) -+ V (x(tq))dx(t )dx(ty)- - - dx(f)). (17)

QED

(The probability density P contains the same implicit
conditions as the expectation E.)

Of course, the practical usefulness of the expansion
depends on the possibility of evaluating the probabil-
ity density. In the cases we shall be concerned with,
the probabilities are Gaussian, Chapman~Kolmogorov
conditions are satisfied, and the quantities held fixed
in the conditions are linear functionals of x(-); hence
the evaluation of P is always straightforward.

The convergence properties of the expansion may be
discussed as follows. For the method to work at all,
the first factor of I in Eq. (13) must be finite. But
the theorem E[e?] = e£l3} where v is any random
variable, guarantees that this factor is finite if the
functional integral exists at all, As for the second
factor in Eq. (13), we can state that the term-by-
term sum of the expectation values of the expanded
exponential surely converges if the potential function
is bounded from below,for then E[[V(x(¢'))dt’] is
bounded from below;it is bounded from above if the
functional integral itself exists,as follows from the
theorem cited earlier in this paragraph;and the
exponent in the second factor of Eq. (13) is bounded
from above. Let the (finite) upper bound be called B.
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Then the terms in the expansion of the operand in the
said factor are majorized term by term by those in
the expansion of e5. Since the latter has a term-by-
term sum of expectation values which converges to
E[eB] = e3,the expectation value in question must
likewise converge. A more delicate discussion will
be needed for potentials unbounded from below, but
the present one will suffice to permit the application
of our methods to many commonly used interatomic
and intermolecular potentials.

To summarize what has been accomplished so far:
The series expansion converts an infinite-fold inte-
gral into a series of integrals of finite order, con-
vergent under the conditions stated. Increasingly
accurate estimation of the functional integral is
obtained by adding successive terms, rather than by
redoing the previous approximation.

Move geneval functionals: The above may be re-
garded as a special case of evaluation value of a func-
tional through its functional Taylor series. Let there
be given a random function f(¢), which may be a func-
tion, say f(¢) = ¢ (x(#)), of another random function
x(1).

We work through characteristic functions,i.e.,
Fourier transforms. Denote the characteristic func-
tion of P{ f} by P{ 7}, i.e., f(¢) is the Fourier conju-
gate function to f(¢). Then

Pif) = E[exp(z' [t = exp(i [F (057 0ot
X E[exp(z‘ [fyir® — Er 01} dt)] (18)

Expanding the exponential following the E sign,we
have

Bif} = exp(iffE [f]dt)E% S Sl
X (i (6], ¢y, -+, 2, )ty ot (19)

where is the nth central moment of f (). Inverting
the Fourier transform, we obtain

Pif} =2 5 [aty--at, w0 [Fe)) (56
xexp—if{f — EAfay p L o)

1 Sy e (=8
=Z}-ﬂfdt1 “dt, ", oty of(L)

x 8{f(t) — E[f®OT. (21)

In Eq.(21) the second integral is a functional integral,
of which I1,df (¢)is the multiple differential. In the
third member, the “fraction” immediately following p,
is a functional derivative, and the term following this
is a functional Dirac delta function.

Now consider the expectation value of a functional

F{f()}:
E[F{f}) = [P{tF{ri 1 ar ). (22)

If (21) is inserted for P{f} in (22), integration by parts
transfers the functional derivative to F{f}, and the in-
tegral over [1df(f) can be carried out at once because
the delta function has been freed of differentiation.
The result is
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E[F{f}} = Z)n—l!‘f' e fatyeat

F{r}| (23)

6}2
5f(tl)...5f(tn) f=Elf]
Now specialize to f(f) = — V(x(¢#)) and F{f} =
exp( — fVcdt). The expansion (15) is obtained immedi-
ately.

B. The Green's Function as an Uhlenbeck-Ornstein
Integral

To obtain the Uhlenbeck—Ornstein distribution in its
standard form, it is necessary to choose the units
somewhat differently than is done in arriving at Eq.
(2). The dimensionless form of the partial differen-
tial equation becomes (see Appendix B)

12 :(‘_2 - U(x)) v, (24)

in which U(x) does not contain any quadratic part, this
having been split off to form the (— x2/4) term.

One further functional transformation is needed be-
fore we can have the Uhlenbeck—Ornstein integral in
the required standard form: Put

d(x) = et2ex¥ 4y (x). (25)

Then (24) becomes

%t‘?’_ = [ — Hp + UWo, (26)
wherz 2 3 ”7
=~ 55 &t 5y) (27

is the “Fokker~—Planck operator.” The Green's func-
tion of this operator alone,i.e.,the solution of

2 Px(t) 1x(0)) = Hyp Px (8] (0) (28)

such that P(x(¢) |x(0)) > 6(x — x,), is the Uhlenbeck-
Ornstein function 0

Pyo (x(t) [x(0)) = [2n(1 — e72¢)]-1/2
(x(t) — x(0)e~*) 2\
2(1 — e2t) /)° (29)

X exp—(

This function is a conditional probability normalized
to unity;hence the Green's function of Eq. (26) is of
the form (9), with V replaced by U and with the con-
ditional functional probability density formed from
Eq. (8) with Py, used in the product on the right-hand
side.

To express the Green's function of Eq.(24) as an
Uhlenbeck—-Ornstein integral, we have to express it
in terms of the Green's function of Eq.(26). In view
of the transformation (25), the Green's function of
Eq. (24), which we distinguish by a subscript ¢, is
given by

-8/2 -x2/4
K, (x,(8),%0(0) = ¢ ™% T 01(8),%(0),  (30)
where & is the Green's function of Eq. (26) that
satisfies the initial condition

_x2

4 -
i/ G(xl—xo)Zex

4600y — ).
(31)

ky(x(8),%4(0)) = e
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Due to the linearity of the differential equation and
the fact that the factor exp( — x3/4 in the last form
of the above equation is not subject to the differential
operation of eq.(26),k(x,(t),%,(0)) is equal to

exp( — x§/4) times Kq;, the Green's function for the
more usual source condition 5(x; —xy). Thus

Kw(x1(3)7x0(0)) = exp( — %B + %(X% — X(Z)))K‘D(xl(.g),xo(o))
= exp(— 38 + {(x} — x3))
X EYO, )[exp (— Lﬁl/(x(t’))dt') 8(x(B) — x,(B)) lxo(O)].

(32)
In forming the partition function of the system from
the Green's function of Eq. (24).

Z(p) = [K (%(8),x4(0))dx,,

it must be realized that, for a given temperature, the
¢t {(and B) of Eq. (2) and that of Eq. (24) are different
due to the different units used.

(33)

Aduvaniage of the Uhlenbeck-Ovrnstein over the
Wiener Inlegral: Since the terms of the expanded ex-
ponential functional integral are essentially the cen-
tral moments of a functional of x(-), rapidity of conver-
gence is obtainable by reducing the dispersion of x(-);
the central moments are, virtually by definition, the
measure of the dispersion of a probability distribu-
tion. This is the reason for the superiority of the
method of transferring the quadratic part of the poten-
tial to the distribution function (making it the Uhlen-
beck—-Ornstein distribution).

For consider the Wiener distribution. The proportiona-
lity of the variance of x({), given x(0), to / means avery
wide range of values in the probability ensemble when
t becomes large. Of course,we deal with paths fixed
at both ends when we evaluate Green's functions, and
so we should be more precise and speak in terms of
the distribution of x(¢’), given x(0) and x(t), where

0 < ¢’ <t. This is given by Ref. 10,

Pl |x(0),x(0) = £ (’g&lz’g(f;{)‘ﬁ;x(t D1xOD (34

For the Wiener process, this is, if we put x(0) = 0,

[__2_”L]'1/2 exp(xw _ [y —x(0]2 x(t’)2>,

t(t—1t) 2t 20t —t") 2t
(35)
which may be put in the form
omt |12 [x(2) — (¢7/6)x(t)]2
[t'Zt = t')] exp(" 20 /D= ) ) - 9

This shows that x(¢’) has mean (¢/¢)x(t) |[which lies
for all ¢’ on the straight line joining x(0) to x(#)] and
variance ¢'(t — t')/t. The latter vanishes at zero

time and at time ¢, with a maximum ¢/4 at the mid-
point of the time interval. Hence, even with end points
fixed, the dispersion of x(¢’) values is of order £ over
the major part of the time interval,and increases
without limit as ¢ increases.

With the Uhlenbeck~—Ornstein distribution the situa-
tion is entirely different. Here the dispersion is
bounded for all t. To show this, it is sufficient to
observe that the dispersion of x (2), given fixed initial
point only, is bounded; Eq. (34) above shows that
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the dispersion with both end points fixed is governed
by that with initial point fixed. Indeed,the dispersion
of x(t) under the latter condition is,from Eq. (16),

1 — e72¢, which is never greater than unity. This
striking difference between the Uhlenbeck~Ornstein
and Wiener distributions is, of course, due to the
damping in the Langevin processes underlying the
former,and is vividly illustrated in the physical pro-
cesses which, historically, motivated their introduc-
tion,11-13,

A detailed account of the clustering of Uhlenbeck-
Ornstein paths with both end points fixed about the
mean path will be found in a paper by Siegel.10 The
situation is illustrated for the Wiener and Uhlenbeck—
Ornstein distributions in Figs.1 and 2, respectively.

The advantage of the Uhlenbeck—Ornstein paths over
the Wiener paths increases with the value of 3 in the
functional integral and with the coefficient of the
quadratic term in the potential relative to the magni-
tude of the remainder. If the quadratic term is rela-
tively small, the remainder of the potential becomes
very large after reduction to the standardized units,
and essentially magnifies the dispersion, nullifying
the effect of the damping. On the other hand, no
matter how small the quadratic term, for sufficiently

X{t')

FIG. 1. Dispersion of Wiener paths with both ends fixed, The
straight line x(t’) = x4 + (¢'/t) (x, — x,) corresponds to the
average E[x(t")] x4(0),x,(0)], the classical path.

X (')

Dispersion < 0(1)

Xo\ AJLA

Il v !
FIG. 2. Dispersion of Uhlenbeck~Ornstein paths with both ends
fixed. The smooth curve is E[x(¢t'}| x4(0), x,(£)]; the equation for

this curve and that for the dispersion may be found in Siegel,
Ref. 10.
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large values of 3 the reduction of dispersion does
come into play, so that the inclusion of the quadratic
term in the distribution is to be preferred at low
temperatures, other things being equal.

C. Reserving a Variable before Performing
“Operation A”

By reserving a variable (some parameter of the path,
or distributed quantity) from an operation we mean
holding it fixed during that operation and completing
the expectation value subsequently to the operation
by averaging over the previously fixed variable. The
concept of the reserving operation in its relation to
other operations will be clearer in terms of a con-
densed notation which we now introduce. If the vari-
able is £,and the entire space of sample functions is
§,S — £ is the space with ¢ excluded,and we put Eg_,
for the conditional expectation value with ¢ fixed:

Eg, fix0} = [P 19f (e{-HTdx(0). (37)

For the expectation value over { we put Ex :If g isa
function g(£),

E,8() = [Plog(t)ds. (38)

A petty consistency impels us to parenthesize £in
E(%) in order to recognize that this operation is,un-
like E;_,,not a function of £ (£ having been integrated
out).

With these notations, the expectation value over S is
the convolution

E=EyEg,. (39)

A certain defeat of consistency may be observed here
in that the ¢ in the last expression would, to agree
with previous usage, have to be replaced by a dot.

If we put
g = [Vix@ar, (40)
then “operation A” consists of the transformation
E(e¥) = e E@)E (e-[B-EM) (41)

whose effectiveness as an approximation is a function
of the smallness of the dispersion of % ;when the dis-
persion of 8 is small, |8 — E(B)] is small and

e [¥-£(¥)] g close to one over “most of” the probabi-
lity space: This means that ¢-E(%)} ig then a good
approximation and, what is also important computa-
tionally,the series expansion of E(e-1%-E(®]) will
converge rapidly.

When the variable £ is reserved from operation A,
Eis decomposed according to the convolution (39),
and operation A is carried out with respect to Eg_,
only:

E(e‘!‘) = E(g)(exp[ - Es_g(%)]
X Es_g(exp {'— [28_ Es-g(%)]}))- (42)

This will usually improve the degree of approxima-
tion, in view of the argument above, since subensem-
bles of S with fixed £ will tend to have lower disper-
sion than S. In fact, if a series of parameters of the
sample function is reserved from operation A4, the
zero-order term approaches the exact result.
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A price is paid, of course, since reserving £ means
another integration to perform; moreover, once past
the first term of the series, the integrand is a pro-
duct, and the integration rapidly becomes complica-
ted. As rule of thumb,if an accurate zero-order re-
sult is desired, it is necessary to reserve variables;
if an expansion seems preferable, it would be better
to keep it simple by not reserving variables.

D. A Comprehensive Operator Formalism

The use of the Uhlenbeck~Ornstein distribution as
described in Sec.IIB can be regarded as an operation,
on a par with the reservation of variables.

To make this explicit, we have to show the relation-
ship between the expectation value of the functional of
JV{x(t'))dt' using the Wiener weighting and that of the
functional of [U(x(¢'))dt’ using the Uhlenbeck-Orn-
stein weighting. A bit of (straightforward) work is
needed here, partly because different units were used
in the dimensionless Bloch/ Schrodinger equation (2)
and the dimensionless Fokker—Planck equation (28) in
order that each would be in standard form. In the
first place, let us distinguish the quantities involved
in the two ¥ equations, (2) and (24), by using primes
for the variables, functions, and parameters of the
latter. Thus Eq. (2) remains

] 192

Eik = (58—;2 - V(x> 1 (43)
while Eq. (24) becomes

au‘/’ — 82 x'z Tr{art '

—a?—_<ax,2——4——u(x)>w. (44)

Primes will also be used for the units used to effectu-
ate the change to dimensionless form, to distinguish
those of the Uhlenbeck—-Ornstein case from those of
the Wiener/Feynman case (Appendices A and B); thus
we have w’ and I’ former case, w and ! in the latter.

If K (x(t),x,(0)) and K’ (x'(t’),xa(o)) are the Green's
functions of Eqs. (43) and (44), respectively, with form-
ally equivalent initial conditions, the first reducing to
6(x’(¢')) — x,) as ¢’ 0,then one can show that

V2K (x(t), %(0)) = 17 V2K/(x* (1), xp(0).  (45)

We use this equation to relate expectation values,
through Eqgs.(9) and (32), with respect to the two dis-
tributions, of the two functionals. First,to have a
more straightforward result,we eliminate the delta
functions from Eqgs. (9) and (32). In the case of Eq.
(9) this is done as follows: By putting [see Eq.(8) for
notation]

Plx(t), x(t ), x(t,-4), + -+, x(t4) | x(0))
= P(x () | x(0)P(x(2,), x(t, 1), - -, x(t )| x(0), x(2)),

(46)
we find that {Ref.4,p.172)
B o exp(~ o Vitar)ote(a) ~ )50
= P(3(0) xo(ONE g o ex0(~ J§ Vixrar)
50,5 3)]. (47)
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On the right-hand side,as indicated by the interval
subscript, the expectation value is taken over the
(infinite) set of variables x(7) for the open interval

0 < t'< B. [Note that we are now using 7 as the vari-
able of integration in the exponent instead of ¢’;this
is to avoid confusion with the use of the prime in this
section to distinguish the variables, etc., of Eq.(2).]
Since an exactly similar expression to this holds for
the Uhlenbeck-Ornstein expectation in terms of
primed variables, Eq. (32) becomes

K7(x(8"), x4(0))
= exp[— 4 B’ + H(x2 — x2)] PO (x} (8" |} (0))

x E%%o[exp(— Jy U(x'(r'))dr'> x[)(O),x’l(B’)]
(48)

Equations (9), (45), (47),and (48) enable us to relate
the expectation values as follows:

EG.» [exp(— f: V(x(T))dT> xO(O),xl(B)J

l =B 1., ., .
\/ltexp(——2—+—4(x1 xo»

“ P (8] x4(0))
P¥x,(p)x4(0)

ﬁ!
X EJO. |:exp<—fo U'(x'(T'))dT'> x(’)(O),x/l(B):,. (49)
The implication of Eq.(49) for the operator formalism
is as follows: Let Q(x) be the quadratic part of V(x),
while U(x) is the nonquadratic part,14 so that

Vix) =

Now, the product of an energy and a “time” (6,¢ or ¢)
is invariant with respect to the transformations of
variables in Appendixes A and B, so we can make the
replacement

Ulx) + Q(x). (50)

fB’U'(x'(T’))dT' - f(? Ulx(T))dr (51)

in the exponent following the E( 04 sign in Eq. (49),
with the understanding that U, x, 7 ,and B8 are regarded
as functions of U’,x’,7’,and 8' for purposes of taking
the Uhlenbeck—Ornstein expectation value. Equation
(49) may then be written

EW(e~%) = 5 EW(e~ 1) (52)

where v is the coefficient of E(0 gy in Eq. (49) and

the gothic letter 1l stands for the time integral of U, a
notation parallel to that of Eq. (40). Since,with a par-
allel notation for @

8 =R+1U, (53)
Eq.(52) means that as an operalor equation, we have

EWg-% = o EUO, (54)
This equation shows in explicit fashion how the frans-
Jfer of the part of the potential to the Wiener distribu-

tion function gives rise to the Uhlenbeck—Ornstein
distribution.
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“Operation A” can be carried out after the transfer
of ¥, so that we have

E(e ¥) = yEUO(e M) = 4 exp[ —
X EU(exp{—

EWO(11)]
— EVO)[}),  (55)

corresponding to Eq. (42),but with more rapidly con-
verging terms on expanding the exponential, due to the
use of the Uhlenbeck—Ornstein potential.

The vesevvation of variables is equally possible after
transferring the quadratic part of the potential, viz.,

(56)
Our approximation techniques for the functional inte-
gral of e ® are summed up in Eqs. (41), (42), (55),and
(56). Of these, Eq. (56) is presumably the most power-
ful, giving the most rapidly converging series on ex-
panding the exponential operand.

E(e™®) = yEY exp[E‘g‘Bg(u)]ElsJ?g(exp{ -

E. Explicit Results for the Green's Function with
Wiener and Uhlenbeck—~Ornstein Probabilities,
with No Variables Reserved

We take up the Wiener probability case first. In
order to use Eqgs.(11) and (15), we transform Eq. (9)
through Eq.(47). This gives

K(x,(8),x4(0))
= P(x,(8)|x4(0))
o rmactnl)

) —\k
« 3 )M(”)[Vc|xo(0),x1(ﬁ)]-

We have suppressed the subscript (0,8) on E,and it

is implicit that probabilities and expectation values
are taken with the Wiener measure. P(x,(8)[x,(0)) is
given by Eq. (8’). It should be noted that the first
term of the series in (57) vanishes identically,by
definition of V_;it is the first centval moment of the
random functional [V(x(f"))dt’. 1t is,of course,as we
have said,the smallness of central moments in gener-
al, and the vanishing of the first one in particular,
that makes for the accuracy of the method.

For the exponent we have,by permuting E with the
¢’ integral,

8
E[fo Vix (') dt’ IxO(O),xl(B)]

= [ E[Vlx(t')|x4(0), x,(8)]d ¢’

= [P L5 v ) Pl lxO(O),xl(ﬁ))dx(t')dt'.(ss

The probability density in this last integrand has
already been obtained [Eq. (36)] for x4, = 0. If x, = 0,
the formula (36) need only be altered by subtracting
%o from both x(¢’) and x(¢). We then obtain from Eq.
(58)

E[f(f V(x(¢))dt’ | xO(O),xl(B)]

278 172
8 /7 .
A dt(t,(ﬁ_t,D
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{x(t") — E[x(t)] x(0), x(8)]} 2
x V(x(t") exp(—— (B —1)/8 >’

(59)
where

E[x(t")|2(0), x(8)]= [(8 — ¢')x(0) + t'x(g)]/B, (60)

which is the “classical path” (i.e.,average path) of a
force-free Brownian particle starting at x(0) and
ending at x(g8).

The corresponding expression with the quadratic part
of the potential transferred to the weighting function
is obtained with U(x (¢’)) instead of V(x(¢’)) and the
Uhlenbeck-Ornstein distribution functionl©

P(x(t) 1 x4(0), %, (8)) = (270)-2/2 exp( — {x(¢')
— E[x(t")]x4(0),x,8)]}2/20), (61)

where
o = [2 sinh?’ sinh( — ¢')]/sinhg, (62)

E[x(t")1 x(0), x(B)] = [%(0) sinh(g — ¢’)
+ x(8) sinh#']/sinhg,  (63)

which is again a “classical path”,this time for a lin-
early damped motion; see the paper by Siegell0 for
details. It will be noted that the transition from the
Wiener to the UO process is effected by two simple
steps: (a) In the probability density function of Eq.
(59), replace t’ and g — ¢* by their hyperbolic sines
throughout,and (b) use double the variance thus
obtained [cf. Appendices A and B, expressions for [ in
Egs. (A3) and (B2)].

The partition function can be evaluated straight-
forwardly by equating x, and x, and integrating over
this variable. But a more accurate approximation
can be obtained with less work by a method that will
be described in Sec.III.

F. The Functional Series in Terms of Propagators
of the Zero-Order Hamiltonian. Relation to the

Feynman—Dyson Expansion

The kth moment in Eq.(57) is evaluated by means of
the probability density

P(x(tk),x(tk_l), = ,x(tl)lxo(o)axl(ﬁ))' (64)

When this combined with the first factor on the right-
hand side of this equation, we have,for ordered times
0< t,<t,...<t, <3,

P(xl(B)Ixo(O))P(x(tk),x(tk_l), e ,X(tl)IXO(O),xl(B))
= Plxy (8),5(8;), x{t,-1), -+ -, x(21) 1 %6(0))
= Plxy (B) %(£)) Plx(tp)| x(t, 1)), « - -, Plx(£) | x5(0)).

(65)
Thus we find

K(x,(B),x4(0)) = eXp<— E[fos V(x(t'))dt'lxo(o),xl(B)D
B[

x [f [Py @) x(t ) dx(t )
XV, ((6)) P(x(t,) 15(ty_ 1) dxltyy) V, (5 lty 1) -
dx(t )V, (e () Ple(t,) | (00 dx( 1) - » dx( tkﬂ . (66)
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The sum on the right-hand side is exactly of the form
of the Feynman—-Dyson series,but with the unexpected
feature that the static potential energy V{x) is re~
placed by a time-dependent potential energy equal to
the deviation of V(x) from its mean, at time ¢, taken
with respect to the zero-order path probability.

Since this is so,there should be a way of deriving
the series which uses the customary mode of deriva-
tion of the Feynman-Dyson expansion. The following
is in fact such a derivation. Starting from the Bloch
equation (2), we put

toa
wie,0) = enp( = Jg P0wae)yte 0, 7
where we have put for brevity
V(t) = E[V(x(£)] x4(0), %, (8)]. (68)
The function ¥ satisfies the equation
v 1 32 =
Frali (- T2 T Vix) — V(t)) ¥, (69)

i.e.,a Bloch equation with precisely the above-men-
tioned deviation of V(x) from its zero-order averaged
value at time ¢ as potential energy.

The Green's function for Eq.(2) is then obtainable
from Eq.(67) as exp[ — f(t, V(t')dt'] times the Feyn-
man-Dyson seriesfor the Green's function of Eq. (69);
but this is just Eq.(66).

We have thus partly reduced the derivation of (66) to
non-path-integral methods. However,path-integral
methods remain essential to the definition of the ex-
ponential factor in (67) and, more importantly, to the
definition of the potential energy in (69). The latter
is a potential function only in a very unusual sense,
having built into it some of the properties of the
zero-order dynamics,through the propagator used in
obtaining V{f) and also being dependent on the initial
and final points x(0) and x,(B).

Even if the perturbative derivation just given is ac-
cepted (and it is perfectly logical despite its unusual
features), the path-integral point of view remains in-
valuable as a source of motivation, as well as for

the interpretation it provides (Sec.IC), of the reasons
for the accuracy of the path-integral series. How-
ever,one can,in a general way,appreciate the accur-
acy of the expansion also from the perturbative point
of view: By subtracting V(#) from the potential energy,
we have greatly decreased its effective value, so that
the perturbation series for Eq. (69) will converge
much faster than that for Eq.(2).

It should be mentioned that the considerations of this
section apply equally well when the zero-order
Hamiltonian includes the quadratic part of the poten-
tial, being associated with the 32/6x2 term in (69), so
that we would have U(x) instead of V(x) throughout.

3. A SPECIAL METHOD FOR THE PARTITION
FUNCTION: CYCLICAL STOCHASTIC
PROCESSES

A. How the Cyclical Process Arises

We find the partition function from Eq. (10) with the
Wiener process (harmonic part of potential retained ).
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Using Eqgs.(9) and (47) for the integrand of this equa-
tion, we have explicitly, in terms of the distribution
function,

z@) = [dx [ exp(— Jo vy dt')

X PW(xo( )y« «,x(t"), < -+ 1%5(0) , T . dx(¢"). (70)
In the argument of P the expression®** x(f')," "
stands for the set of all x(¢) with 0 < # < 8.

If the Uhlenbeck~Ornstein process is used (transfer
of harmonic potential to the distribution), we have in
the same way from Eqgs. (33) and (32)

Z(B) = e8/2 fdxo fexp(— fos Ulx(¢))at’
X PYUco(B), <+, x(t), -~ IxolO) o 1T, elt).
‘ (11)

Both of these forms for the partition function can be
studied in terms of the general integral

20)= [ax, [exp— [JE6N at) Plool ), 20,

celxg(0) 1, dx(e),  (72)
where F is a sufficiently well-behaved function and P
is the distribution functional of a Markov process,

x(*).

The conditional probability with equal x{0) and x(g)

in Eq.(72) is the probability of a modified process, now
to be described. The reason for introducing this pro-
cess will be given later (last paragraph of this sec-
tion).

In the modified process x4(3), instead of being a para-
meter distinct from the variables of integration in
Eq. (72), may be regarded as a random variable- on
the same footing with them, so that (with one simple
additional feature, to be described) the integration
over x, becomes part of a new kind of expectation
value. Let the time interval [0, 3] be bent back on it-
self so that the point 8 coincides with the point 0. In
effect we have a circle (Fig. 3) of circumference 8.
On this circle define a random process x(f) whose
probability distribution P{x(:)} is invariant to rigid
displacement (rotation) of the function x(-):

P{x(- + 7} = P{x("} (73)
for all 7. The probability distribution of x(-) shall be
defined by the set of all possible m -point distributions,
m=1,2,...,

Ig(xm(tm)yxm-]_(tm_l), tre ’xz(tz)’xl(tl))
= CPlx,(t ), (¢ 1)
X Py (8 ) 1% g (be0))- - -

X P(x(t)x,(t,, —8)), (74)
where P(x(t,,,)|x(¢,)), t,,, > t,,is the conditional
probability distribution of a stationary Markov pro-
cess. C is a normalizing constant. The equal sub-
scripts (m) of the variables x(¢,,) and x(¢,— B) are to
be noted. This, according to our convention, makes
the variables equal. Since for such a process the
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basic link probability P(x(t,,,)|x(¢,)) is invariant to
time displacement, the above definition is invariant

to time displacement and consistent with the postul-
ated property (73). It is consistent with the necessary
periodicity (of period B) of the postulated process,in
particular.

Another consistency requirement that P must satisfy
is that integrating out any variable must yield a pro-
bability of the postulated form for the remaining
variables. That this is so follows from Eq.(74) dir-
ectly with the use of the Markov property

fP(x(tk+1)| x(tk))dx(tk)P(x(tk)|x(tk—1))

= P(x(tk+1) |x(tk_1)); (75)
for all of the variables except «,,. It follows for x_,
too, with the added use of the time-displacement
invariance of the basic link probabilities.

The evaluation of the normalization constant goes
as follows: By integrating over all variables in (74),
the application of (75) to all the integrations except
that over x,, yields

cf Plx,(t,))x,t, — B) dx,, = 1. (76)
In the Wiener case the integrand is a constant [see
Eq.(8")], and the process is not normalizable;the
cyclic Wiener probability is invariant to vertical
displacement of the sample function. But in the Uhlen-~
beck-Ornstein case [Eq.(29)] the integral does exist,
and we find

C=1—¢b8 (77)
The function P in Eq. (72) is the general distribution
function whose m -point representative in terms of the
basic link probabilities is the product of P's on the
right-hand side of (74). The integration over x, com-
pletes the set of integrations denoted by the product
sign so that the result is a complete expecation value.

We can drop the subscripts to obtain the general
expression

Z(p) = c~1j'eXp<— foﬂ F(x(t’))dt’)
x P{x()} oI _ dx(t).  (18)

The argument of P is the function x(t) defined over

(0,8].

When P is normalized, we can write Z(8) in terms of
the cyclic expectation value E:

z(p) = c—lf‘:[ex;)(— JOFC) dt’)}. (79)

FIG. 3. Schematic representa-~
tion of the time axis ina
cyclical stochastic process.
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All the methods of Sec.II are applicable to E[-*+] in
this case: expansion in central moments, reservation
of variables,and transfer of the quadratic term.

In the Wiener case,where P is not normalizable, Eq.
(78) is still valid, with the definition (74). C may be
assigned an arbitrary value. E[* -] may be assigned
the formal meaning of integration with the weighting
P{x (')} ,but the result of the integration does not exist
for all the operations of Sec.II.

The utility of the cyclic process is apparent from a
comparison of Eqgs. (72) and (78). Equation (72) is the
integral over x, of a functional integral; Eq.(78) is
just a functional integral alone. As will be seen, the
functional integral in the latter is of very much the
same type as in the former. Thus the effect is to
eliminate the integration over x,,an added compli-
cation which cannot be suppressed in any other way.
In addition to the analytical simplification,the result
using the cyclic process turns out to be more
accurate, as can be shown by comparing numerical
results in the lowest order of the series.

The foregoing discussion constitutes an explicit for-
mulation and generalization of the highly intuitive

line of argument by which Feynman and Hibbs showed
that due to the equating of x(0) and x(g), the time in-
tegration in the exponent of Eq. (57) can be carried out
trivially.

B. The Partition Function via the Cyclic Probability
with No Variables Reserved

To take up the Wiener weighting first: Since the
cyclic probability is not normalizable, we arbitrarily
assign C, which cancels out anyway, the value 1. We
shall show that in effect operation A by itself cannot
be carried out in this case. Since [Eq. (8')]

Px(t") = (2mp)~1/2, (80)
we have
E(Vixt)] = (218)71/2 [ Vix)dx = a, (81)

where a is finite or infinite. If @ is infinite,the method
fails and there is nothing more to say. If the potential
is integrable,a is finite. Suppose then,first, that it is
nonvanishing. Then the moments diverge: E.g.,we
have for the first central moment

(2nB)‘1/2f[V(x)— aldx=a—a  0=—o, (82)
and operation A fails. If,on the other hand, a = 0,
V(x) — a = V(x), and the “central” moments reduce to
ordinary moments, the over-all exponential factor of
the series is just unity; operation A has a null effect,
the resulting expansion being only the standard Feyn-
man-Dyson one.

If the Uhlenbeck~Ornstein weighting is used, opera-
tion A can be carried out by itself. We have

Plx,(t,) =C™1PUOx,(t,) | x, (¢, — B))

{1 —eB)2 1/2 (- e~8)2
‘<2vr<1— e-26>> e""( 2(1— ¢ 28)

x2>, (83)

from (29) and (77). This is independent of ¢,. The
partition function is, from (71), (72}, (73), (74),and (77),
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ZB) =eb2(1—e By 1 E [exp(— foﬂ U(x(t’))dl>]. (84)

{The coetficient of & [++-]is [2 sinh(8/2)]"1, the known
partition function of the harmonic oscillator. Thus we
have the standard result if U(x) = 0.} Operations A
and C may be carried out with respect to the operation
E. Using A, we have,to zero order,

Z(p) = Z,(8) = (2 sinh g)’w exp<-—- E[ f;)BU(x(t'))dt'D,

where (#)
) tanh(3/2)
> [foﬂ U(x(t,)) dt’] — B(_%{_)l/z

L] )] v oo

In Sec.IV we shall compare this numerically with
the results of other approximations.

C. Partition Function via Cyclic Probability, Re-
serving x

We first take up the case of Wiener weighting. Be-
cause of the nonnormalizability we put C = 1. Equa-
tions (71),(72),and (78) give

Zp) = feXp<— fOBV(x(t’))dt'>13{x(')}qu,lssdx(t’).
(87)

In order to reserve ¥ in a reasonably straightforward
way, we define

P(x(),%) = P{x()} o(s—lfoﬂ x(t")dt' — x> (88)

from which the path probability conditional on ¥ can
be obtained through the usual relation

P(x(")1x) = P(x(-),x)/P(x). (89)

We can then calculate probability distributions condi-
tional on x,and write

z@) = [PR)E [exp<— fOBV(x(t'))dt') |Ix::|d5c'. (90)

The equivalence of this form to that of Eq.(87) is
readily demonstrated with the use of the definitions
(88) and (89). If the conditional probability distribu-
tion is normalizable,we can carry out operation A
on the expectation value E[---] and get

~ ~|r8
zZ(@) = fP(x)exp(— E[fo V() dt'l,vD
1)k
x 3 (_;_‘l)_. MWV %] dx.
Is the conditional probability normalizable ? If the
expression for it on the right-hand side of (89) exists,
it is normalizable and, in fact,normalized to unity
automatically by virtue of the relationship

(91)

TP (x(), %) JI, dx(t) = P(%). (92)

Hence all that remains is to calculate f’(a’c) and show
it to exist. From Eq. (92),
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= [P(x()6(p f #)dr —x) T dx(t). (93)
<t'=8
From Eq.(74),
P(()) = P(()) 4 (0)-x(8)r (94)

where the right-hand side denotes the basic (non-
cyclic) probability for a path with equal end points.
Parametrizing the delta function in (93) and separat-
ing the integration over x(8) from that over the other
path variables, we obtain
1 [ oz

= fdx(ﬂ) 2_17f_oo dxe t/\xfp(x(-))x ©)=x(8)
X exp<— 2 I dx(t).
B ‘0 O<t’'=B

® x(t") dt’> (95)
The inner path integral has been calculated by Feyn-
man and Hibbs [Ref. 2, Eq. (3. 62)], for the slightly
more general case x(0) #x(g8). Since we are now using
Wiener weighting, we put w = 0 in their formula and,
of course,omit their imaginary factor i. We obtain

an integral over A

(27)73/2 87172 exp[ —
whence
Pk) =

i (x — x(B)) — Ba2/24],

(21)71/2, (96)

and the normalizability of P(x(-)) is established.

The present case is the only application of operation
A given by Feynman and Hibbs,who find the zero-
order result. Continuing with our methods,we need
next the one-point conditional path probability which
we calculate from the joint probability via
= P(x(1),%)/P(%).

Px(t) |%) (97)

Again by parametrizing the 6 function as in Eq. (95),
(V3/ng) exp{— (6/8)[x () — x]2},

which is indeed independent of ¢ as was shown by
Feynman and Hibbs, using a somewhat complicated
argument. On interchanging the E operation and

f(f dt’ in Eq. (91), we obtain a zeroth-order approxi-
mation to the partition function in the case of Wiener
weighting;this is the result obtained by Feynman and
Hibbs (Ref.2,p.285),

P(x(),x) = (98)

Zy(B)= (2np)1/2 [ di expl — pw,, ()] (99)
which has just the form of the classical partition
function with an “ effective potential”

2
Wy @) = £V 15 =(S) 17 ayve)
« eXp<—g (y —z)2>. (100)

(In this section we distinguish between Wiener and
Uhlenbeck—Ornstein weighting.) W, (%) is a Gauss
transform of the true potential and in the high temp-
erature limit g8 — 0, W}, (X¥) -» V(x), and the system is
described by the classical partition function. In Eq.
(100) we have replaced x(f’) by y as an integration
variable. If we introduce the Fourier transform of
V(y) by
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then Wy, (X) may be written in the more compact form

dye tkyV(y), (101)

W= o [ deV{E)e#iers/24, (102)

In the case of the Uhlenbeck-Ornstein weighting the
corresponding results have an identical form although
with more complicated coefficients. Parametrizing
the 6 function in Eq.(95) the path integral is again a
standard one [Ref. 2, Eq. (3.66)] and the zeroth-order
approximation to the partition function is

B 1/2 oy
Zyo ®) &<8n[cosh (8) — 1]> f-w dx

x exp{ — B[Wyo® + 1x2]}, (103)

where the effective potential is
B/2 172 .o

Woo® :<2ﬂ[(6/2)coth(6/2) - 1]> Joo BUO)
8 (y —x)2 >

4 [(8/2)coth(p/2)—1]

= 2—1, J2 arve)eis

o exp(— k2[(B/2)coth(8/2) — 1] ) .

B

X €exp (—

(104)

D. Higher Terms in the Expansion

The use of the theory of Gaussian probabilities allows
us to derive an explicit expression for the nth term
in the expansion (91) in both the Wiener and Uhlen-
beck~Ornstein cases. In either case we can write in
terms of cylindrical probabilities

5,@)

I

[(— D/t MWV, %]
n B tn
=(=1ef° at, fo dt, |
Xf(‘)t2 dtl,.. fdxl..

X .P(xn (tn)’ tte ,xl(t]_))x)/ﬁ (E)

dx, V, ) V,(5,)

(105)

One can consider ¥ as a random variable in the same
way as x4(¢), " ,xn(tn), and, since the process is
Gaussian, we can express P by the characteristic
function
Blx, (1), ", x1(£)), %)

= Px,(t,),  *,x.(t),%|x (¢ —p))
n=1

1 .
= ana T S dky - dk,,, exp (— i 121 k; (x,--—(x>)>

n
x exp [ — ik,.1(F — ()] exp(——; ‘E kikjoij> ,
7]

(106)
where in the Wiener case
<xi> = (J‘C> Ixn’
oy = 051 = {lx; — )Tx; — (x))
=min [t, + 8 —1,),¢; + (8 —¢,)](107)
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Un+1 n+l = 3/3’
1/28} .

Onnzﬁ’ nn+]_ B/z
O =t +@—t)HL—[t, + B—1)

Integrating (108) with respect to £, and k,,, and using
(107), we obtain,after considerable manipulation, the
following compact form for the expansion terms in
the case of Wiener weighting:

SHE —( 1 e [ty dey e,
n B n
X V.(ky) -V (- )exp(ix g}lki) exp <— ﬂzak?>
X exp{— Z} k; k B
i<j
1 =t (t;— 1)

TR
where
V.(k) = V(k) — 6(k) [dk'V(¥') exp(ik'Z) exp( — k'23/24

= V(k) — 27 6(k) W, (X). (109)
The Uhlenbeck—Ornstein case is treated in a similar
manner;it is somewhat more complicated but equally
straightforward. Via the properties of the Uhlenbeck-
Ornstein distribution,!3 an expression of the same
form as (108) is obtained

(=)=

B tn (b

SWW = Gy Jo @t g s f 7 A1y »

x [dRy - dk V, (k) V,(k,) exp % E] k;

ol 1 o

B

X exp< t?‘, k; k B ;3 [cosh (tj — ti)

y coth<_§>— sinh (4, — ti)]— 1€> , (1
where in this case

Vik) = V) — 276(k) Wy, (X). (111)

Equations (108) and (110) have an identical structure.
This can be seen by introducing functions referring to
the Wiener and Uhlenbeck~Ornstein cases,

oma- -4

PUO(t) = % 3% [cosh(t)coth(—%)—sinh(t)]— 1% . (113)

(112)

We can then express S, in a form applicable to both
the Wiener and Uhlenbeck—Ornstein cases by using
the appropriate functions ¢(¢) and V (&),

(—
(2
X exp(ia‘c é}ﬁebexp(— 3 ¢(0)
X E k2 — i%kiqub(tj - ti)>’
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n
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Equation (114) involves multiple f and k integrations,
and except for small values of n it would not be practi-
cal to use it directly to calculate corrections to the
zeroth-order estimate of the partition function. How-
ever,for each S,(X) it is possible to obtain a simple
expansion in terms of the derivatives of W(x). Expand
the last exponential of (114) in a Taylor series;the
& function in (109) or (111) cancels off all terms in
this expansion which do not involve k;, i = 1,...,n.
The remaining terms can be expressed in terms of
derivatives of W(X) since

- 1 oo . A
W @) =5 S dr(ik)? eir% exp[ — Lp(0)k2],  (115)

-G

thus removing the & integrations. The remaining #in-
tegrations over the ¢ functions can in principle be
computed and have been calculated in the first few
cases, For example,

$,® =— [w@2 [°ar, jf dt ¢ty — t))

+ [W"(f)]z'%.gedtzfézdtld’z(tz —4) + 00, (116)
$3(0) = — [W'(@)3 [° aty [ o dey [ at,
><4’(t2_ t1)¢(t3—'tz)¢(t3'—t1)+ t (117)

If W(X) is a smooth function of ¥, which will be the
case since it is defined as a Gauss transform of V(X),
an expansion in its derivatives will give a good
approximation to each S, (¥). The particularly simple
case of a one-dimensional oscillator (in which deri-
vatives higher than the second vanish) is treated
numerically in the next section. A different expansion
for the partition function, which corresponds to a re-
ordering of the expansion (91) in which each S, (¥),
has been expanded in derivatives of W(x), can be
obtained by an operator technique and will be des-
cribed in the second paper of this series.

4. NUMERICAL RESULTS

In this section we present the results of the applica-
tion of the approximation methods described in this
paper to the extremely simple case of a quantum
particle in a harmonic potential. This problem has
the advantage that one can immediately obtain an
exact solution for the partition function and related
quantities in order to make an accurate estimate of
the accuracy of the different terms in the expansions.
For this reason approximate methods of calculating
functional integrals are usually tested on this poten-
tial; see,for example, the work of Fosdick,8 in which
the functional integral is approximated by an »n-dimen-
sional integral which is then ealculated numeriecally.

The exact partition function for the quantum harmonic
oscillator is (Ref.2, Chap. 10}

= [2 sinh(8/2)]"? .

(The parameter 8 in our units corresponds to #w/kT
in Feynman and Hibbs;8 — 0 is the classical limit,

B — © the quantum limit,i.e., 7— 0.) With the usual
definition of the free energy F, then the quantity

(118)

f = 2F/hiw = (2/8) In[2 sinh(8/2)]

(119)
= 1in limit g—> .
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TABLE L.
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The relative errors § ;, §,,and 6 ; obtained by the application of the moment expansion to zeroth, second, and third order to the

estimation of the free energy of a quantum particle in a harmonic potential.

8./8 B 0.1 0.5 1.0 2.0 4.0
8, 1.508 x 10~ 8 3.166 x 1075 8.271 x 10-3 6.117 x 10~ 3 3.606 x 1072
0 8y 2,393 x 10712 1.252 x 1077 1,295 %X 1074 3.661 x 104 6.920 x 1073
[ 7.106 x 10~ 16 9.304 x 10710 3.864 x 10~ 6 4,443 x 1075 3.653 x 1073
[ 1.249 x 10~ 8 2.620 x 1075 6.830 x 10~ 3 5.009 x 1073 2,860 x 10~ 2
0.3 6, 1.803 x 10~ 12 9.425 x 10~ 8 9,717 X 10~ 5 2.718 x 10~ 4 4.992 x 10-3
by 4.872 x 10716 6.370 x 10-10 2.632 % 10-6 2.969 x 1075 2.248 x 10-3
[ 6.176 X 107 ? 1.293 X 10~ 5 3.350 x 1073 2.397x 1073 1.253 x 102
0.6 [ 6.273 x 1013 3.269 x 10~ 8 3.340 x 1075 9.038 x 1075 1.517 x 1073
03 1.192 x 10716 1.551 x 10710 6.313 x 1077 6.731 x 10”6 4.289 x 1074
6o 5.442 x 10-10 1.136 x 106 2.911 x 10-4 2.002 x 10~* 9.235 x 10~4
0.9 0, 1.641 x 10714 8.509 x 10~ 10 8.566 x 1077 2.195 x 10~ 6 3.156 x 105
[ 9.254 x 10~ 19 1.194 x 10~ 12 4.745 x 1079 4.617 x 10~ 8 2,217 x 1078

We have made approximate calculations of f and of
the relative error

—NVr.

The lowest-order approximation with Wiener weight~
ing was calculated for the harmonic oscillator by
Feynman and Hibbs (Ref. 2, Sec. 10.3):

6= (fapprox (120)

= (2/8) In(B) + B/24. (121)
Calculatiors of f¥for different values of 8 are given
in Feynman and Hibbs (Ref. 2 p. 286). One can intro-
duce Uhienbeck—Ornstein weighting by splitting the
potential into two parts. In nonreduced units,
V(y) = 3 mw2y? = 3mw?y? + smwiy?2. (122)
The first part is treated exactly, contributing the
Uhlenbeck—Ornstein weighting in the functional inte-
grals;the second part of the potential is subjected
to the approximation methods discussed in this paper.
(“’2 = w reduces to the case of Wiener weighting;
w, = w corresponds to the exact calculation for the
harmonic oscillator.)

Since V(y) is a quadratic function of y, it - turns out
that W (X) is also a quadratic function of x. From the
discussion at the end of Sec.IIID we see that, for each
term in the expansion (91),S, (x) involves only W (x)
and higher derivatives,and thus each term in the
moment expansion will be independent of x. The x
integration in the zeroth-order expression (103) can
be performed exactly,and we can write the nth
approximation to the harmonic oscillator as

Z, =2y (1+ 8+ S5+
fn:fo*

Using the results of Sec.IIID up to third order in the
moment expansion, we obtain

-3 -]

. m(zﬁ"’[cozl;(ﬁl - 1]>§, (124)
1

- +8,),
(123)

(2/B) In(1 + S, + Sz + *** +5,).

suozl<é.2_>4 1
27 4\B/ sinn2(3,/2)

X [%i_ sinh2<-B—2> 21 ginn (31)] , (125)

S — _l_<ﬁ_2>6 {4 cosh B1/2)
37712V /) |p,sinh3(g,/2)

el
2
_ E%[le th(Bz ) 1]
[ -l 5 ]
+ i—z sinhz(%l> [%1— coth(B 1) 1} i

I ,cosh(8,)" cosh(8,/2)

8 sinh(3,/2)
sinh3(3,/2) 3

s3]

— T 2 ginh -

* sinh(8,/2) B, sinh(g,) + 1681nh2 (8,/2) s
(126)

where

By =Tlw,/RT, B, =rhw,/kT, B3+ p3=p2. (127)

The expressions (124)~(126) have been calculated and
the corresponding errors S;,S,,and S, in the estima-
tion of f are presented in Table I for different values
of the quantum parameter g and for values of the ratio
B,/8 between 0 (Wiener weighting) and 1 (exact cal-~
culation). From this table it is seen that the moment
expansion provides an extremely accurate estimate
of f,the accuracy increasing rapidly as 8 — 0 (the
approximation becomes poorer for <2 5 as the higher
terms become more significant). When applied to the
harmonic potential, the approximation method of
Fosdick® required the calculation of more than 3000
terms to match the accuracy obtained by going just

to second order in the moment expansion,

In the spirit of this paper the numerical calculations
have been restricted to the simplest possible case to
which the formalism is applicable, that of a particle
in a one-dimensional harmonic potential, This case
has the advantage that it is one of the few cases where
the appropriate functional integrals can be evaluated
exactly and thus an estimate of the accuracy of the
various approximations is possible. It has been shown
that in this case the first few terms of the moment
expansion give an extremely accurate estimate of the
partition function and the corresponding free energy
with much less labor than existing computational
methods.
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Finally, we refer to the possible advantage of using
Uhlenbeck—Ornstein weighting without reservation of
variables (see Sec.IlIB)—relative to Wiener weighting
with reservation of x. Obviously the former will give
good results only for not too small harmonic content
of the potential. This is because, in view of the non-
normalizability of the cyclic path probability for the
Wiener weighting, having two small a harmonic con-
tent means approaching too closely to this singular
case, with undesirable results on the accuracy of the
calculation., We have done some computations to com-
pare these two methods. Typically,for 8 = 3,5,and
by assuming the perturbation as usual to be harmonic,
the Uhlenbeck-Ornstein weighting without reserva-
tion of variables in the lowest order becomes increa-
singly more accurate than the Wiener weighting with
reservation of ¥ once the ratio of perturbing potential
to the harmonic potential included in the weighting
function goes below 0.3. Insofar as this is a test of a
real situation, say that of a truly anharmonic perturba-
tion, this implies a perturbation in this same ratio to
a presumed, harmonic component. When the much
greater mathematical simplicity of the results with-
out reservation of variables is taken into account,
this might imply a substantial advantage. It should

be noted that this method tends to work best in the
quantum region.

CONCLUDING REMARKS

This paper is the first in a series which presents a
new approach to the calculation of those functional
integrals that appear in problems of quantum statisti-
cal mechanics and which approach, it is hoped, will
lead to a powerful method of performing practical
calculations. The present paper has mostly been re-
stricted to a description of the mathematical basis
of the approximations in the simplest case of a
single particle in a one-dimensional potential. In
later papers we shall consider more realistic situa-
tions—the extension to three-dimensional systems is
simple and to many-particle systems difficult,be-
cause of the problem of statistics.

APPENDIX A

The one-dimensional Bloch-Schrddinger equation is

A. SIEGEL AND T. BURKE

36 \2m 3y
in which 7% is Planck's constant and 7 is the mass of
a particle in a potential U. The Bloch equation is (A1)
as it stands,with 6 = 1/kT,whereas (A1) becomes the
Schrodinger equation under the transformation ¢ =
i 7/l (T = time, T = absolute temperature,and # is
Boltzmann's constant.) Wiener measure goes into
Feynman measure under this latter transformation;
while we speak throughout in the language of the
Bloch equation and Wiener measure, our results are,
at least formally, transformable into the Schridinger—
Feynman situation.

£-<ﬁ2 82

— @))@ = - s, (A1)

Equation (A1) goes into the dimensionless form (2)
under the following substitutions:

H(x) = 3y (x))/Fw,
Y (x,8) = VT ¥(y(x),0),

x=9/l, t="Hhws,

(A2)

which make use of the basic length and energy para-
meters

fiw = energy of the ground state of (A1), (A3)

1= (H/mw)l/2 = width of the ground-state wavefunc-
tion of (A1).

APPENDIX B

In order to obtain the standard form of the Uhlenbeck—
Ornstein distribution, we must first redefine w of Eq.
(A3) as the frequency associated with the harmonic
part only of U(y);i.e.,we assume

K 1

Vy) = & Y2450 (0)y3 4, (B1)
and define
w=K/m'2, |=(0/2myr’2, (B2)

Although the definitions (B2) both differ from (A3),
we still transform variables and functions according
to (A2). This leads to the alternative dimensionless
form (24) of the Bloch—Schrodinger equation, where
the modified potential U(x) is defined by

U(x) = O(y))/fiw — x2/4. (B3)
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All Stationary Vacuum Metrics with Shearing Geodesic Eigenrays
J.Ké6ta and Z. Perjés

Central Research Institule for Physics, Hungavian Academy of Sciences, Budapes! 114, Hungary
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The general solution of the field equations of stationary vacuum gravitational fields possessing geodesic eigen-
rays with nonvanishing shear is obtained. Nontrivial solutions exist only if the eigenrays do not rotate. The
resulting metrics fall into two classes: either there is a functional dependence among the field quantities {this
class belongs to the Papapetrou solutions), or the quantity y9, which in the shear-free case has been interpre-
ted as the central mass, is unigquely determined. This latter class consists of two space~times. The curvature
invariants vanish in the » — © limit for both solutions; however, the metrics exhibit singular behavior in this

limit,
1. INTRODUCTION

The class of gravitational fields possessing geodesic
rays! is very conveniently treated by the spin coef-
ficient technique developed by Newman and Penrose
in 1962.2 Newman and Tamburino! have shown how
the metrics can be obtained in explicit form using
spin coefficients. They calculated metrics for which
the rays have nonvanishing shear, and, surprisingly,
they learned that this class cannot be considered as
a generalization from the nonshearing case. A later
result of Unti and Torrence3 indicated that the class
of metrics with shearing geodesic rays is rather
poor, in the sense that solutions exist only if the rays
are either hypersurface orthogonal or cylindrical.

If the space—-time contains a Killing vector field, the
gravitational equations can be reformulated in a
three~-dimensional space V; associated with the tra-
jectories of the Killing motion.%»5 {For notations see
Ref. 5. This paper will hereafter be referred to as P.)
For stationary space~times (timelike Killing field)
an SU(2) spin coefficient method has been developed
in P. The field equations in SU(2) spinor base can be
solved exactly if the eigenrays are geodesics of V.
{The notion of eigenrays will be elucidated below. ) As
shown in P, the gravitational fields with nonshearing
geodesic eigenrays are of Petrov type D; they have
been thoroughly studied in previous papers. There-
fore, we can anticipate new results only for metrics
with eigenrays of nonvanishing shear.

In this paper all stationary vacuum metrics with
shearing geodesic eigenrays are constructed in expli-
cit form. The findings resemble in many respects
those of Newman and Tamburino. The dropping of the
nonshearing condition leads to a rather restricted

set of metrics which does not contain the shear-free
Kerr solution as a limiting case. Nevertheless, there
are some solutions with shearing eigenrays. To
demonstrate this, we first list some results of P.

Let the coordinate x® = { be chosen as the arc of the
trajectories of motion. The line element is then of
the form

452 = — [~ 1ds2 + f(dt + w,dx?)2, 1

with all functions independent of ¢ . ds (ds =g, dxdx*)
stands for the line element of the three-dimensional
background space V.

One can introduce in V; a complex basic vector
“triad” 2z} = (1%, mi, m‘) p = 0, +, — with the ortho-
gonality propertles Lt =mmt = 1 Imi = mmt = 0.
The direction of the real un1t vector Tiis convemently
fixed by the relation

G, =Gmi=0. (2)

Here, G; is a complex 3-vector determined by the
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gravitational field as follows:

G, DEF é’,i/ZReg, S'é =f.i + z’eijkw}'%iz V@_f2 (3)
We notice that the triad pro

G.= Gm‘ are related by (G,
correspondmg equation (G_ ) =

ojections G, = Gyt and
_G_, and we have a

Equation (2) defines a congruence of curves with the
tangent vector I, The curves are called the eigen-
rays of the gravitational field. We now fake the co-
ordinate x1 = 7 to be the arc length of the eigenrays.
Thus we have for the base vectors

It=056{, wmi=uwbd] +£95i, a=23. (4)
The coordinate transformations

¥ =7r + ¥x9), (5)

xe’ =gxe'(x%), b =23, ()

are still permissible.

The quantitys ¢ = m;
plex rotation of mi,
choice of the triad:

3m'if is made zero by a com-
There is still a freedom in the

U'i=1i, m'i=eiCpmi, (7
Here, CO is an arbitrary real function of the co-
ordinates x4,

Geodesic eigenrays are characterized by vanishing
of the complex rotation coefficient K=m }2 17, The
field equations for geodesic eigenrays areé taken
from P:

Dw = pw + 0w, (8a)

D9 = pta + gke, (8b)

Do = {p + p)o, {8c)

Dp =p2 + 00 + GG, (8d)

DGy = (20 + Gy —G,)G,, (8e)

Dt =pr —07T +GG_, (8f)

§@ — 3w =78 —Tw + p —p, (8g)
682 — Béa = 189 — 1£9, (8h)
6p — 80 = — 207 + G,G,, (8i)

8T + 57 = pp — 65 + 27F — GOEO +G_G,, (8))
Gy —DG. =—pG_+GG_, (8Kk)
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8G,=—0G_—G Gy, (81)

6G_ = (p —p)G, + TG_—G_G,. (8m)
In our coordinate system the scalar differential
operators appearing in the field equations are of the
form D =0/9r, 6§ = wd/9r + £23/3x4, From Eq.

(8c) it follows that the phase of the complex shear o
is independent of ¥. Therefore, by the triad freedom
(7) we make ¢ real and positive., Thus the triad is
completely fixed.

2. THEOREM ON SHEARING GEODESIC EIGEN-
RAYS

When trying to integrate the field equations (8) for
nonvanishing o one is led to many separate cases,
most of which do not contain any solution since the
calculation ends at some prohibitive relation. It is
desirable to recognize such cases directly, without
the lengthy integration procedure, from the field
equations. Information can be gained immediately
from the field equations by an operation used by
Newman and Penrose in their proof of the Goldberg-
Sachs theorem?: One takes appropriately chosen
derivatives of the Newman—Penrose equations and
eliminates second-order terms by the commutators
of the scalar differential operators. Consecutive
effectuation of a procedure of this kind provides the
proof of our main theorem?7:

Theorem: Geodesic eigenrays in a curved vacuum
stationary space-time cannot have coexisting shear
and curl. If the eigenrays do shear (o = 0), then they
also diverge (o + p # 0), and one has 30 = 5{G | =
p—p=0and

The proof takes a more concise form by the use of
the operators

5. "ZFR(5 = iB). (10)

Here,R is the “luminosity distance” satisfying?
DR = —[(p + p)/2]R. By definition (10) the operators
D and 54 commute as follows:

Dby — 6,0 =—ia ¥ 0)6z, a = Imp. (11)

We now observe that the only pair of field equations
from which new first-order relations can be obtained
is (8e) and (81). It is easy to show for o = 0 that,
except in singular points, G, is nonzero; for the as-
sumption G, = 0, by Eq.(8]) leads to G, = G_ =G,

= 0 and thus the curvature invariants ¥, vanish [see
Egs.(81) in P]. The above formulation of the theorem,
however, excludes the case ¥, = 0 (the flat space).

Thus we may write, after dividing by G,

DInG, =2 +Gy,—Cy, (8e)

— 561Gy =Gy +0G_/G,,. 81)
Taking the mixed derivatives and summing the equa-
tions thus obtained, we can eliminate the second-
order terms by use of the identity (D5 — 6D) InG,
= (p6 — 08) InG, [cf.(72a) in P]. The first-order
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terms are substituted from the field equations (8)
such that, as a result, we have

o(8 InGy + 8 lno —G_ — 27) = 0. (12)

Considering the case when o = 0, we have to prove
that 2ia = p — p = 0 or, which is equivalent, that there
exists a coordinate system in which w = 0.

Acting on Eq. (12) with the D operator and subtracting
the 6 derivatives of appropriate radial equations such
that the second-order terms are canceled again, we
obtain

3y280 + (y2 + 02)50 + (y2 — 02) (5p + 207) = 0,
y = 1Gol. (13)

Equation (13) can be made homogeneous by substitu-
tion of (8i):

v(38p + 260 + Bp) + 206y = 0. (13")

In the 54 notation, (13’) can easily be split up into
components which are mutually orthogonal in the
complex plane:

-ydi(p + p_)) —ydzaz ié;(c‘y) =0. (14)

Denoting A2 = 02 + 42 — a2 we obtain from the com-
mutators (11) and from (8)

[D—(p +0)]olp +p) = 4A6.4 —ila ¥ 0)b¢(p + D),

A
[D—(p +B)]5,¥ = vo,(p + B) —ila ¥ 0)b5 v = <ﬁ,’>
Y

(15)

Repeated application of the operator D — (p + p) on
Eq. (14) and use of (15) yields the following series of
first-order equations:

(3a + 20)6.(p + p) + 4iADs A — 2i(a ¥ 0)67a = 0, (16)

((2a + 40)(a ¥ 0) — 442]5z(p + p)
+i(3a + 40)4A6,4 =0, (17)

[a(a? — 02) — A2(5a F 40)]6z(p + P)
+ i{(2a ¥ o) (a + 0) — A2]4A46,4 = 0. (18)

(17) and (18) are homogeneous in 6,(p + ) and 5;A
with the determinants

D, = 4A% — A2(802 — 5a2? ¥ 2a0)
! + (a2 — 02) (a2 — 402 £ 2a0). (19)

Here u and ! label the determinants of the equations
with the upper and lower signs, respectively. The
simultaneous vanishing of both D, and D, means y = 0
(flat space). We may still have either of the deter-
minants vanishing. Let us consider, for example, the
case where

D,=0 (20)
and
5,.(p +p)=6_A=0, (21)
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Operating again with D — (p + p) and using (15),from
Egs.(21) we derive the first-order relations

406, A —i(a— 0)o_(p +p) =0,
Ad_(p +p)—ila +0)8,4 =0, (22)
Hence we immediately have
648 =6_(p +p) =0 (23)

if the determinant of Eqs. (22) is different from zero.
The condition

det = 4A2 + a2 — 02 = 0, (24)

when substituted back into (17), leads to the same
result.

In a similar fashion, for the alternate case
D, =56_{p +p) = 5,4 = 0, we obtain
6_A =6,(p +p)=0. (23)

We thus conclude that for = 0 Eqs.(17) and (18)
always yield

b4lo +P)=06_(p +P)=06,4=06_A=0 (25)
or, in terms of the § operator,
8o +p) =564 =0, (26)

Assuming for the moment that p + p is nonzero, the
commutator [Eq. (72b) of P]

66— 86 =76 —178 + (p —p)D, 2n

when acting on p + p and A, gives ¢ = 0. We now
show that p + p actually cannot vanish. Equations
(25) together with (14) and (16) ensure that 50 = &y
=6a =0.

Let us denote the phase of G by x. Our starting
relation (12) is then written in the form

isx —G_ =21, (28)

Letting the operator & act on (28), taking the real
part and subtracting (8j), we get

(b —5)2 + 2(op —y2 —02) = 0. (29)

This equation, when compared with (8d), tells us that
p + p is nonvanishing and that we have pp —y2 — 02

= 0. This completes the proof of our central theorem.

The “radial” equations (8a)—(8e) containing the
operator D are now readily integrated to yield

0/00 =y/y0 =—p=1/2r, (30)
Gy =— /) r?° —iQ)/(»'° + i), (31)
te = (1/¥%) (A3ro”2 + iBay-072), (32)

Here @, A% B¢ are real integration “constants”,
depending only on x2 = x and x3 =y; 00 and y0 are
positive numbers subject to

002 + 02 =1, (33)
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The coordinate freedom (5) has been used in (30) to
fix the origin of ». From 6p = 0 we get w = 0 in
this coordinate system., The v dependence of the
complex sealar quantity § appearing in (3) can be
obtained from the definition of G, (see P):

G, = DE/2Reé. (34)
Now G, is given by (31), and thus & takes the form
8=f +ip =[f0/r1° +iQ)] + ipO, (35)

with f0, @0 real functions of x,y .

We are now faced with the following remnants of the
original field equations (8):

686 =0, (36a)
Im[(6 — 7)€% = 0, (36b)
207 = G,G,, (36c)
7(02 — y2) = 0. (36d)

In accordance with Eq. (36d), the metrics split up into
classes with either 7 = 0 or y = 0. This bifurcate
logics of the field equations must be dealt with by
treating both of the classes separately in the follow-
ing sections.

3. METRICS WITHT =0

For this class from Eq. (36c) we get G, = 0 or 58 =0.
Thence ¢0 = 0 and the quantities f9, @ are in fact
constants. This gives rise to a functional relationship
between the quantities f and ¢.

On substituting the expression (32) for £2 into
Iméé2 = 0 [Eq.(36b)] we find that the operators

A EF 493 and B ¥ B2y, commute:

[A4,B] = 0. (37)

The only coordinate freedom in V5 is now (6). The
quantities A¢, B2 behave as two-component vectors
under the transformations (6). Since at regular
space—time points A¢ and B2 are linearly indepen-
dent, we can make them tangential to the coordinate
curves x and y, respectively:

B = 54, (38)

With this choice of the coordinates we have

£3 = (i/y2r)r-o%2, (39)

Ae = 53,

£2 = (1/42r)7°"2,
The 3-vector w, in the line element (1) will now be
evaluated. The relation required at this point is.
taken from P;

W= W= €@t VB 2. (40)
The coordinate ¢ can be shifted without disturbing
(1): ¢ =t + F(r,x9. By this transformation we are
able to put w, = 0, and we still have

' =1t+t0x,y). (41)
Equation (40) takes the form
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Wy =Wy = 0, Wy ™ Wy x = 270Q/f0' (42)

From (41) and (42) we obtain

w; = (0,0,— 2 (y°Q/fO)x). (43)

With the aid of formulas (4) and (39) we may cal-

culate the background metric 8; = lilj + mir’izj + rTzim]..

Consequently, Egs. (35) and (43) yield the full four-
dimensional line element (1) for the class with 7 = 0:

0
5= “%YF?%Q_Z(W +7170° dx2 + 140 gy2)
0y y° Oy

This space~time is stationary and axially symmetric.

In addition, as observed above, the invariant / is a
function of ¢. Therefore the line element (44) repre-
sents a particular Papapetrou solution.$

4. METRICS WITH ¢ = y

Equation (33) precludes the flat space limit by
determining uniquely the constants 00 and 19:

00 =50 = 1/V7. (45)
The remaining field equations (36a)—(36c¢) can be

worked out after calculating the quantity G_ = 81nf,
(36¢c) immediately yields 7. From (36a), {36b) we get

58 :O_Q{A(P():O, AQ=(B_QA) 1l'1f0, (463.)
Bq’O:AfO, BQ:Q(B_QA)lnfO)
Im[(5 — 7)8%) = 0~ 2[4, B)]
= 2Q(A InfO)A — (A InfO)B — (B Inf0)A. (46b)

The problem becomes somewhat simpler if instead
of A and B we use the operators

a = \/—O-A, B = 1/_6(3 — QA). (47)

In terms of the a and 3 operators, taking proper
linear combinations of the field Eqgs. (46), we can
write

[a,8]=— (@Q)a, (48a)
BQ =0, (48b)
aQ =B Info, (48¢c)

@ f0 = O, (484d)
@0 =0. (48e)

Letting the commutator (48a) act on @, and taking
account of (48b), (48c), we find that

B(FO8f0) = 0. (49)

This relation, when compared with (48b), tells us that
F92 870 ig a functional of @ if @ is not constant. But
let us consider first the case when @ is constant.
For such metrics the operators @ and 8 commute;
therefore, the coordinates can be chosen to have

J. Math, Phys., Vol. 13, No. 11, November 1972

J. KOTA AND Z. PERJES

@ =8y B=0;—Qd,. (50)

Equations (48c)-(48e) are easily integrated to yield

fO=Plx +Qy), ¢°=Pry. (51)
Here, P is a constant of integration and the origin of
coordinates has been shifted to make the constant
terms vanish. There exists another solution with /0
and ¢ 0 constant, but this latter metric has vanishing
7 and thus belongs to the class which has been dis-
cussed in Sec. 3.

The most important field quantities obtained by use
of (51) are

8=f +ip =Px +ir1%)/(r?° +iQ),

£2 = (2rf0)"1/2¢7°%/2 3 = §(2f0)-1/2y—1"/2
1
8ij :{ fOrl—yo fo,fl+7°] . (52)

The calculation of the four-dimensional line element
terminates with the evaluation of w;, using formuia
(35). As a result we have

ds2 = — (fO/f) r1-7°dx2 + r1+1°gy2)
+ 2dr(dt — 2y0Qydx) + fldt — 2y0Qydx)2. (53)

A glance at the line element convinces us that for @
vanishing, /9y is a Killing vector. Investigation of
the curvature invariants ¥, (cf. P) shows that this
space-time has true singularity at » = 0 and be-
comes flat in the limit» —» ©, f < 0, However, the
behavior of the metric is rather awkward; it remains
regular for » - ® only if x or y also goes properly to
infinity.

Consider now the case when the quantity @ does
depend on the coordinates. We want to integrate the
simultaneous equations (48) without committing our-
selves to any particular coordinate system. Accord-~
ing to Eq.(49), we may write

FOZBfO = q(Q). (54)

Next we act with (48a) on f0:

BLrO3[afO + (q'/q)BfOTt = 0
= af0=gp(Q)f93 —(¢'/q)Bf°. (55)

(Prime stands for d/dQ.) From (55) and (484d) it
follows that

Bl@® — 30/02 +(¢’/q)f°] = 0

- 00 =3pf02 —(¢'/q)f° + s(Q). (56)
Here, the functionals p, ¢, and s are arbitrary for the
moment.,

The latter expression for ¢ is now placed in Eq.
(48e):

(207792 — (¢'/q)'f° + s’ +(pfO —q'/q)%f0)Bf0 = 0. (57)
(48¢) shows that 80 cannot vanish, This condition

means that /0 still varies once @ is fixed. Therefore,
the parenthesized quantity of eq.(57) is equal to zero
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and can be regarded a polynomial equation in 0, We
make the coefficients of the various f© powers vanish:

p=0, (q'/q) —(q'/q)2 = 0. (58)

It is possible to set s = 0 because ¢ is defined only
up to an arbitrary constant term. Straightforward
integration yields

q =1/(aQ +b), (59)

s' =0,

with a,) real constants, We are now in position to
put down the relation connecting /0, @, and ¢[cf. Eq.
(56)]

@0 =[a/(aQ +b)]fO. (60)
Upon the above considerations, the quantities /0 and @

are appropriate candidates for independent coordi-
nates. Nevertheless, some simplification of the final
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results is achieved by the following choice of the co-
ordinate system:

Q=x/y, fO=(ax +by)/y2. (61)

Calculation of the metric can be performed in a simi-
lar way to that used in previous examples. The re-
sults are summarized in the following:

e0=afy, J=(ax +by)/(x2r 7 +y27°),

ds2 = — (fO/f) (r1-7°dx2 + r1*1°dy2) (62)
+ 2dv[dt —0(x2/y)dy ] + fldt —yOx2/y)dy]2.

The curvature invariants vanish for » — © except in

such directions in which f becomes unbounded. Cur-

vature singularities exist at» = 0, y =0, ax + by=0,
and in the exceptional ¥ — © limit.
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A closed-form exact solution to the field equations of a scalar—tensor theory, formally similar to the Brans—
Dicke theory, is obtained. It is shown that the present theory predicts the same effects, within observational

limits, as the Einstein theory.

1. INTRODUCTION

Recently!l a new scalar—tensor theory of gravitation,
based on a modified Riemannian manifold,2 was pro-
posed. This theory may be regarded formally as a
special case of the Brans—Dicke theory,3 but is sig-
nificantly different from the latter in that the scalar
field is characterized by the function x0 = x0(x2),
where the x© are coordinates in the four-dimensional
Lyra manifold, and the tensor field is identified with
the metric tensor g,, of the manifold.

The field equations given by Sen and Dunn! for the
combined scalar and tensor fields are
RaB — $g0BR — (x0) 2x0,0x0,8 + 2 (x0) 2gaByO,ry0 )

= — 81G(x0)2TaB  (1.1)
where w = 3, T, is the energy-momentum tensor of
the field, and R is the usual Riemann curvature sca-
lar. It was pointed out that these equations are iden-
tical with the Brans-Dicke equations viz.

RoB — JgaBR — wp2popeb + zwo g,

= — 81¢ 1Tah + ¢ (g3t — gebligp) (1.2)
if the scalar function ¢ satisfied the condition
¢,a;3_gasm<b =0 (1-3)

and w = 3. It should be added that the gravitational

“constant” must be redefined as well. Furthermore,
Sen and Dunn gave only a series-type solution to the
static vacuum field equations.

In this paper I shall enlarge upon the discussion pre-
sented by Sen and Dunn. Specifically, an exact solu-
tion to the static vacuum field equations is obtained
in closed form and the equations of motion of a test
particle in the vicinity of a point mass are dis-
cussed. From these and from the linearized form of
the field equations, it becomes clear that the observ-
able predictions of the present scalar-tensor theory,
at least to second order in small quantities, are iden-
tical with those of the Einstein theory in a Riemann
manifold.

2. STATIC SPHERICALLY SYMMETRIC FIELD

This section details the general solution to the
vacuum field equations of the scalar—tensor theory
in the Lyra manifold in the static spherically sym-
metric case. The solution appears in closed form
and reduces to the Schwarzschild solution as a spe-
cial case.

The field equations in the matter-free region surroun-
ding a point mass are

Rob — $gaBR — (y(x0)2¢ 0,0 0,8

+ 3w(x0) 2geBx0ug0 =10, (2.1)
where w = 3. We shall assume an isotropic metric
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and can be regarded a polynomial equation in 0, We
make the coefficients of the various f© powers vanish:

p=0, (q'/q) —(q'/q)2 = 0. (58)

It is possible to set s = 0 because ¢ is defined only
up to an arbitrary constant term. Straightforward
integration yields

q =1/(aQ +b), (59)

s' =0,

with a,) real constants, We are now in position to
put down the relation connecting /0, @, and ¢[cf. Eq.
(56)]

@0 =[a/(aQ +b)]fO. (60)
Upon the above considerations, the quantities /0 and @

are appropriate candidates for independent coordi-
nates. Nevertheless, some simplification of the final
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results is achieved by the following choice of the co-
ordinate system:

Q=x/y, fO=(ax +by)/y2. (61)

Calculation of the metric can be performed in a simi-
lar way to that used in previous examples. The re-
sults are summarized in the following:

e0=afy, J=(ax +by)/(x2r 7 +y27°),

ds2 = — (fO/f) (r1-7°dx2 + r1*1°dy2) (62)
+ 2dv[dt —0(x2/y)dy ] + fldt —yOx2/y)dy]2.

The curvature invariants vanish for » — © except in

such directions in which f becomes unbounded. Cur-

vature singularities exist at» = 0, y =0, ax + by=0,
and in the exceptional ¥ — © limit.
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A closed-form exact solution to the field equations of a scalar—tensor theory, formally similar to the Brans—
Dicke theory, is obtained. It is shown that the present theory predicts the same effects, within observational

limits, as the Einstein theory.

1. INTRODUCTION

Recently!l a new scalar—tensor theory of gravitation,
based on a modified Riemannian manifold,2 was pro-
posed. This theory may be regarded formally as a
special case of the Brans—Dicke theory,3 but is sig-
nificantly different from the latter in that the scalar
field is characterized by the function x0 = x0(x2),
where the x© are coordinates in the four-dimensional
Lyra manifold, and the tensor field is identified with
the metric tensor g,, of the manifold.

The field equations given by Sen and Dunn! for the
combined scalar and tensor fields are
RaB — $g0BR — (x0) 2x0,0x0,8 + 2 (x0) 2gaByO,ry0 )

= — 81G(x0)2TaB  (1.1)
where w = 3, T, is the energy-momentum tensor of
the field, and R is the usual Riemann curvature sca-
lar. It was pointed out that these equations are iden-
tical with the Brans-Dicke equations viz.

RoB — JgaBR — wp2popeb + zwo g,

= — 81¢ 1Tah + ¢ (g3t — gebligp) (1.2)
if the scalar function ¢ satisfied the condition
¢,a;3_gasm<b =0 (1-3)

and w = 3. It should be added that the gravitational

“constant” must be redefined as well. Furthermore,
Sen and Dunn gave only a series-type solution to the
static vacuum field equations.

In this paper I shall enlarge upon the discussion pre-
sented by Sen and Dunn. Specifically, an exact solu-
tion to the static vacuum field equations is obtained
in closed form and the equations of motion of a test
particle in the vicinity of a point mass are dis-
cussed. From these and from the linearized form of
the field equations, it becomes clear that the observ-
able predictions of the present scalar-tensor theory,
at least to second order in small quantities, are iden-
tical with those of the Einstein theory in a Riemann
manifold.

2. STATIC SPHERICALLY SYMMETRIC FIELD

This section details the general solution to the
vacuum field equations of the scalar—tensor theory
in the Lyra manifold in the static spherically sym-
metric case. The solution appears in closed form
and reduces to the Schwarzschild solution as a spe-
cial case.

The field equations in the matter-free region surroun-
ding a point mass are

Rob — $gaBR — (y(x0)2¢ 0,0 0,8

+ 3w(x0) 2geBx0ug0 =10, (2.1)
where w = 3. We shall assume an isotropic metric
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ds2 = — e2pdt2 + e24[dr2 + v2(d62 + sin20 d¢2)],
(2.2)

wherep =pl), g =ql) andx? =v», x2 =0, x3 = ¢
are spherical coordinates and x4 = ¢, In the spheri-
cally symmetric field x0, =x%; = x0 ; = 0 and Egs.
(2.1), with the metrie (2.2) reduce to the three inde-
pendent equations
20"+ 2" + 2p'g’ +r(@)2+r)2=0, (2.3)
P trq" +r Q)2 +p g ()2 =0, (2.4)
2rq” +v(@')2 + 49" —rv(h')2 =0, (2.5)
where we have put
x0 = eW2w, (2. 6)
From (2.3), (2.4), and (2. 5) we obtain the equations
rp" 7 ()2 + 2 +rp'g’ =0, 2.7
vp" —rq" +v(p)2—vg)2 +p' — 3¢ =0. (2.8)

The successive substitutions

p =logy, wv>0, (2.9)

v =x (2.10)
put (2.7) in the form

w'/x) +q' + (2/r) =0, (2.11)

provided x # 0; this is guaranteed since we do not re-
guire p = const. Equation (2. 11) possesses the inte-
gral

v =x =k /2 (2.12)
where %k, is an arbitrary constant.
The substitution

g = logw, w >0, (2.13)
together with (2.9), brings (2. 8) into the form

v v+ v'frv — w"w + 3w//rw) = 0. (2.14)
Now (2.7) and (2. 9) yield

v"/v + vy +v'g’fv =0
or, using (2.13),

v+ W'y + /v)w /w) = 0. (2.15)
‘Equations (2.14) and (2. 15) yield

wv'fr +v'w’ +v” + 3w/r) =10
or

y2wv' + d3vw’)/dy = 0. (2.186)

Now »2wv’ = r2v’ed = ky using (2.12) and (2. 13), so
that (2. 16) gives upon integration
r3vw’ = — Ry + ky, (2.17)

where k, is an arbitrary constant. This result may
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be written, with the aid of definitions (2.9) and (2. 13),
in the form

r3q'eted = — kyy + k.. (2.18)
Likewise (2.12) implies

v3p'ered = kyr. (2.19)
From (2.18) and (2.19) we then have

q'=—p'(1—Iy/7), (2.20)
where k, = k,/k; is an arbitrary constant.
Via (2. 20) Eq. (2.7) becomes

b+ (2/r)p’ + (ky/7)(p")2 = 0, (2.21)

which is a Riccati-type equation. By means of the
substitution
p =rs'/kys, s =s(r), (2.22)

we can reduce (2.21) to

¥s”" = 3s’ =0, (2. 23)
which is easily integrated to give

s’ =k,/¥3, k, = arbitrary const, (2.24)

s = (ks /72) + kg, (2.25)

where k; = — 3k, and k4 are arbitrary constants.
Hence (2. 22) gives

P =ky/(1 + kgr?), (2. 28)
wherek,/k ks =—2k /kyand kg =kg/k; arearbitrary
constants. In order to integrate (2. 26), we need to

know what sign kg takes. We can associate a sign with
kg by appeal to the physics, as follows.

Since (2.7) and (2. 8) are independent of % they must
hold, in particular, for 2 = const, i.e., for x0 = const,
in which case the field equations (2.1) are just the
Einstein field equations. The isotropic Schwarzschild
solution

p =log[(1 — B/r)/(1 + B/r)], (2.27)
q = 2log(l +B/7), (2.28)
B = arbitrary const

should be a particular solution to Eq. (2.26). This
will be so if

kg =— 1/B2 (< 0). (2.29)
With this sign for kg we can now integrate (2.26),

obtaining

_ »/B\BR/ks
p = log <‘i‘¢%/§> + logk, , (2. 30)
where kq is an arbitrary constant; or
1— B/r\Ba/k 1—B/r>1/}‘
e? =kyo <1 +B 1‘) = k1o <1 + B/r ’ (2.31)
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where B and by, = (— I)Bkl/ ks, kg4 are arbitrary con-
stants, and we have put

A = k,/Bk; (= arbitrary const). (2.32)
Equations (2. 20) and (2. 26) yield, with proper arrange-

ment of constants,

q'=—p' + 2B2y-3/(1 - B2/r2) (2. 33)
which has the integral
q =—p + log(l — B2/r2) + logk, 4, (2. 34)

where &, 4 is an arbitrary constant. Hence, using
(2.31), we have

ed = kye?(1 — B2/r2) = ky,(1— B2/r2)
x[(1— B/)/(L + B/r)] A,

where k,, =k ;/k;, is an arbitrary constant, or in
another form

01 = k(1 + B/V)ZG%g/;—/) Y (2. 35)
From (2. 20) we have
q" =—p"(1 — ky/7) — kyp’ /72, (2.36)
which with (2. 5) leads to
r()2 =— 20r — ky)p” + (1 — ky/7)2(p’)?
—(4—2k,/r)p’.  (2.37)

But (2.31) gives p’ = 2B/A(r2 — B2), p” =-—4Bvr/
A(»2—B2)2 and substitution of these in (2. 37) yields,
after some algebra,

()2 = 4B2(1 — A2)/22(r2 — B2)2, (2. 38)
Hence
_ —-C /A
h= 1og[k13<i—+%/§> / |, (2. 39)

where C2 = 1 — A2 (C, = arbitrary const) and k5 is
an arbitrary constant, From (2. 6) we have, therefore,

0 1—-B/yr\=CA
=R \T Y By ’

where k4, = k‘{?ﬁ and we have put

(2.40)
wC? =202 = 2 — A2, (2.41)

So we have, finally, the geneval solution to the field
equations (2. 1) in isotropic, closed form:

p B 1 _B//y 1/x
= e 0<1 = y) , (2.42a)
1~B/y> O=1D/x
9 _ a
e =e 0(1 +B/7)2<ﬁ—-37; s (2.42b)
_ -C/x
xO:xg (i +g/:> s (2. 42¢)
where
22 =2- wC?2, w=3 (2.43)

and p o (= logk, ), qo(= logk, ,),x3( =k, ,), B,C (and
hence A) are arbitrary constants.
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By putting C =0, A =1, pg = ¢, = 0, the above solu-
tion reduces to the ordinary Schwarzschild solution
to Einstein's field equations.

It should be noted that if A is to be real, a natural
but not essential restriction, then |C| < v2/w = 2/V3.

3. MOTION OF A TEST PARTICLE

We shall next consider the equations governing the
motion of a test particle in the field represented by
Egs. (2.1), where w = 3.

In the Lyra manifold the autoparallels of the affine
connection are

o { B aA0 4 110 (6%, + 0 b, — g ") FoAB
—32%p, ~ 9,)¥"x" =0, (3.1)
where X# = dxt/ds, ¥* = d2x* /ds2, and
O, = 2(:0)2x0 (3.2)

The connection between the vector ¢, and ¢, is,for
the field of equations (2. 1), given by

26, + ¢, =0 (3.3)

Using (3. 2) and (3. 3), the equations of motion (3. 1)
become

0

D A AT A SIS PO 1 A TN e D A L 1}
where the g g are given by the metric 2.2).
Since x0 = x9() from (2. 42c), we obtain Eqgs. (3.4)
explicitly as
¥ +[q + (xo)'1(dx°/d’r)]1"2

+ [~ 72q — 7 + 3 (x0)~1(dxO/dr)r2]h2

+[—72¢’ — 7 + 3 (x0)"1(dx0/dr)r2] sin20$2

+[p' — & (x0)~1(dx0/dr)]e2s=24i2 = 0, (3.5)
b+ [2r-1 4+ 2¢" + %(xo)‘l(dxo/dr)]';’é
— sinfcosfd2 = 0,  (3.6)
$ +[2r-1 + 2" + & (x0)"1(dx0/dr) |7
+ 2cotffp =0, (3.7)
E+ (20" + 3 (x0)"1(dx0/dr) Pl = 0, (3.8)

where the prime denotes differentiation with respect

tor.

Equation (3. 8) possesses the first integral
b=k e 2p(x0)-1/2, (3.9)

where %, is a constant. Using (2. 42), we can write
this in the form

t = const X[(r + B)/(r — B)]4-C¢¥2x
or (3. 10)
b=k[B +7)/(B—7)A,
where # is a constant and A = (4 — C)/2x is also a
constant. If we take / = 1 when+ = 0, then # = 1 and
(3.10) becomes
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di/ds = [(B +7)/(B — r)]A. (3.11)
Thus the proper time interval As measured by an
observer moving with the test particle in the free
region surrounding the point mass is related to the
coordinate time interval At measured by an observer
at the point mass (* = 0) by

As = [(B —7)/(B + r)]AAtL. (3.12)
Planetary motion about the sun may be considered to
take place in the plane ¢ = 37; that such motion will
always be confined to this plane may be seen from
Eq. (3.6). Then we get Eq. (3.7) in the form

¢+ [2r71 + 29" + 1 (0)-1(dx0/dr) P = 0, (3.13)
which possesses the first integral
r2¢ = kye~2a(x0)"1/2, (3.14)

where k, is a constant. Using Eq. (2. 42b), we can
put (3.14) in the form

dp _ Kr2 v — B\?
ds )2 >

ds (r2—B2)2\r +B

(3.15)

where K is a constant and D = (4 + C)/2x is also a
constant., A third equation for planetary motion is the
metric (2. 2), in the form

¥2 +r2$2 — e202q]2 _ g~20 = O, (3.16)
where we have remembered that § = 7. Then Egs.
(3.9), (3.14), and (3. 16) provide us with enough infor-
mation to predict a perihelic shift, provided that we
have values of the constants B, C, and k on hand.

4, PERIHELIC SHIFT

It is instructive to obtain an expression for the ad-
vance of the perihelion of a planet about the sun using
the series solution given by Sen and Dunn to the field
equations (2.1). This will be an alternative to using
the exact solution in Eqgs. (3. 9), (3. 14), and (3. 16).

The metric of the geometry is given by

ds? = evdt2 — eNdr? — v2d62 — v2 sin20 dp2,  (4.1)
where A = A(¥), v = v{r)

e? =D + Colr), (4.2)

er = Ard[¢’ (r)]2/[D + Co ()}, (4.3)

) :néo a,r-r. (4.4)

D,C,A are arbitrary constants and the coefficients
a, are given by

a, arbitrary, Aaf =D +Caqy (a =0),

a, =0, a, arbitrary,

a_, n > 3,are determined by a certain recurrence

n
relation in terms of a, and a,.
Also

x0 = krexp [{-[4/(r2) + /wr)(¢”/¢")}V/2,  (4.5)
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where % is a constant. Retaining only a few terms,
we write (4. 2), (4. 3), and (4. 5) as

e’ =Clbg + a1 + ay=3 + ar-14), (4. 86)

er =Aev(a? + 6ajar=2 + 8a,a,r3 + 9adrm4),
(4.7)
w0~ 1dx0/dr) = 2co[r=2 + (a,/az)r3

—{(@,a3 + 3a3)/2a,a3lr=4],
where b,C =D + Cay and ¢3 = 2a,/a,.

The equations of motion (3. 4), with the metric (4. 1),
are explicitly

(4.8)

P+ [ZN + (x0)71 (@x0/dr)}i2

x0)=1(dx0 /dr)]6 2

+ e\ + dr2(w0)1(dx0/dr)] sin202 2
+ ev N - Hx0)-1(dx0/dr)]i2 = 0,

o

+ e N—7 + 372
1,2

o

(4.9)

6 + [2r-1 + & (x0)-1(dx0/d¥) 6 — sinfcosod? = 0,
(4.10)
¢ +[20=1 + 3(x0)~1(dx0/dr)rd + 2cotbfd = 0, (4.11)

P+ [V + 3 (x0)"1dx0/dy)]irt = 0. (4.12)

We observe that Eq. (4.9)—(4.12) are identical, to
first order in 1/7, with the Einstein equations of
motion; this is so because the term in x0 is of second
order in 1/7, by (4. 8).

Putting 6 = 37 for planetary motion, Egs. (4.11) and
(4.12) have the respective integrals

ieu — kl(xO)-—l/z’ (4.13)

72¢ = ky(x0)-1/2, (4.14)

where £, and &, are constants. A third equation of
rlnotion, in lieu of (4.9), is the metric (4.1) with 8 =
3

eM2 + 7202 — eviz + 1 =0, (4.15)

Substitution of (4. 13) and (4. 14) in (4. 15) results in

72 + H2r~2¢~ " — (k3/k3)H2e " e™v + e~ =0,
(4.16)

where we have put

H =172, (4.17)

By putting # = "1 and making the substitution d/ds =
Hu2d /d¢$,we can write (4., 16) in the form

@u/dp)2 + e~ Mu2 — (k2 /kZ)e " re™ v + e M2 = 0,

(4.18)

where e~*, e~¥, and H~2 are functions of #, given to

third order by

e =1+(Aa3) YCau— 6Aa aju?—(5Caz+ 8Aa a,)ul),
(4.19)

e"re v = (Aa?)"1[1 — 6(ay/a,)u2 — 8(ay/a; 3], (4.20)

H 2 = k52{1 — 2cqu + (264 — cay/an)u? — [4c3/3

— 2c%a,/ay — (comag + 3cad)/3aaijud;.  (4.21)
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To obtain the last expression, we have used (4. 5) and
(4. 8). Substituting in (4.18) we have, to third order in
u, the following orbit equation:

(@u/dd)2 = ay + au + au2 + aus, (4.22)
where 2
1 (1 k1> (4.23)
o, =— — 3 .
°T R\ ad
1/Ca
a, =— _;—zc()), 4.24)
ky \daf
1 < 9 kaa3 6a, 2¢,Ca 2, Coty
Up=— g \Rg+ —5 ——————5— T 2 —>,
kg Ady aq Aaf .
(4. 25)
1 (kCa, 8ka, 4Ca; Ta,  68c
B="2 \4? " A A o 3
2 a4y ay ay N
c,Ca @ + 3¢y
_ %% | 0% Zco%ﬁ) . (4.26)
Aaya, 3a,0,

We refer to Mgller4 for the method we have used to
calculate the perihelion advance A¢ from Eq. (4.22).
We have

Ap = 570, +uy)ay, 4.27)

where u, and %, are the roots of the quadratic o,u? +
a,u + a5 = 0, so that

u, tu, =—a,/a,

[2 Cal] /[kz .\ 6kia, 6a; 2c,Cay
=|2c, ——5 ——g — —— — ———g—
° AdlIl? " 4d} o A

[6N7)
+ 22 +&], (4.28)
%3

where c(z) = a;/2a,. Equations (4. 26)- (4. 28) give

A = 27 (- Cay/Aa2k,)? X (E + 1), (4. 29)
where E is an expression all terms of which involve
a, or a, (to this level of approximation).

In the Einstein case we have Ca; = — 2y, Aaf = 1,
C=0;=0,=0, ky =h, 05 =2p, where 2p = ;GM
and % is the usual “areal” constant. Then

(A9)ginstein = » 7 (— Cay/Aatk,)? = 6mp2/h2,  (4.30)
in accordance with the usual theory.
Thus (4. 29) and (4. 30) yield

AY/(AD)ginstein ™~ E + 1, (4.31)

which shows that there is no difference between the
predictions of the present scalar-tensor theory and
Einstein's general relativity theory when we are
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satisfied with an approximation to the second order
in 1/7;this is the usual order of accuracy for predic-
tions to be experimentally detectable at present.

5. LINEARIZED FIELD EQUATIONS

We shall set

gOLB = naB + haﬂy (5. 1)
wheren;; =1, n,, =— 1, i =1,2,3, and also set
x® =0+ &, (5.2)

We shall neglect squared terms in %5 and £. It will
be helpful to define

Yop = Map — 2Thph (5.3)
and

0y = YaB.HnB” ’ (5-4)
where

h =n*Bh,; to first order. (5. 5)

Then the field equations (1.1), to first order in k4
and £, become

Oypg — O 5 = 0.0 T TGy, 1P = 167G (¢g) 2T, ,, (5.6)

where to first order Uy, = 7#¥y,, , ,. Introduce the
coordinate conditions g, = 0, and then (5. 6) reduces
to

Oy, = 167G (x8)72T 44, (5.7)
which is identical to the linearized form of the Ein-
stein field equations if the gravitational constant G*
of the present theory is related to the Newtonian con-
stant G by

G* = Gyg)2. (5.8)
Hence the weak-field solution to the field equations
(1.1) is just that of the Einstein case. In such a field
the constants of the solution (2. 42) take the values
po=q,=0,C =0,x =1,B = 3G*M,x0 = x§. (5.9
One therefore expects in such a circumstance that,
at least to second order in 1/7, the predictions of
this scalar—tensor theory for perihelion shift, bending
of light rays, and gravitational redshift will not differ
from those of the Einstein theory, as we have shown
above by considering explicitly the equations of
motion. When strong gravitational fields are pre-
sent terms of third order in 1/ should be significant
and then physical differences will be apparent be-
tween the two theories.
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The Yang—Mills (YM) potentials are decomposed into an isovector part and a part which transforms nonho-
mogeneously under local gauge transformations. Two decompositions are shown; one of them is based on a
gauge-invariant version of the transversality condition, and the other arises from a gauge-invariant modifica-
tion of the Lorentz condition. The latter is Lorentz as well as gauge invariant. The gauge invariance of the
decompositions is obtained at the expense of locality since the separate parts of the decomposed potential are
functionals of the full YM potential. The transverse-longitudinal decomposition is used to throw the YM source-
less field equations into a gauge-invariant Hamiltonian form, Static fields in the Hamiltonian formulation are
discussed. The decompositions are used to construct massive, gauge-invariant but nonlocal Lagrangians. A
Lorentz and gauge-invariant nonlocal interaction of the YM field with a spinor—isospinor field is formed. The
transverse-longitudinal decomposition is used to investigate the geometric structure of a configuration space
Q of YM potentials. The nonexistence of submanifolds of  orthogonal to the gauge-invariant manifolds X €
is proved in contradistinction to the electromagnetic case. A Green's functional for the Yang~Mills field is
represented explicitly by an infinite power series of functionals and is shown to be self-adjoint.

1. INTRODUCTION

The nonhomogeneous transformation of the electro-
magnetic vector potentials under local gauge trans-
formations is the cause of difficulties in the quantum
theory of the field. To eliminate these difficulties, a
number of studies have been devoted to reformulating
the theory in terms of gauge invariant quantities.
Relevant to the problems considered here are the in-
vestigations of Belinfante! and Rohrlichand Strocchi.?
They have, by averaging over paths of the path-depen-
dent potentials of DeWitt3 and Mandelstam,4 construct-
ed potentials which are invariant under local gauge
transformations. The vector potential of Belinfante
satisfies a tranversality condition and is thus not
Lorentz invariant. Rohrlich and Strocchi2 have de-
rived a vector potential which is a gauge and also a
Lorentz invariant functional and which satisfies the
Lorentz condition.

The nonhomogeneous transformation law of the Yang—-
Mills® potentials is likewise troublesome. The analy-
sis carried out here is directed to an end similar to
that of Refs, 1 and 2 in that we seek to identify a homo-
geneously transforming part of the YM potential
which would appear in the theory as a physically sig-
nificant dynamical variable. However, the problem

is approached here from a point of view which is
different from that held in Refs. 1 and 2. Nevertheless,
their results are recovered when the YM field be-
comes Abelian, that is, when the structure constants
of the isotopic spin group SU(2) vanish. Although not
emphasized by them, the work of Belinfante and
Rohrlich and Strocchi yields gauge-invariant decom-
positions of the electromagnetic vector potentials

into a gauge scalar and a part which transforms non-
homogeneously under a local gauge transformation.
Here, for the non-Abelian case, we develop analogous
decompositions which separate theYM potentials

into an isovector part and a “longitudinal” part which
transforms nonhomogeneously under local gauge
transformations. The longitudinal part of the poten-
tial is carried along in the theory, in somewhat the
same way as in Schwinger's method of group para-
meters,® and is not supposed to have direct physical
significance. In one of the decompositions the iso-
vector part of the potential satisfies a gauge invariant
version of the transversality condition, and inthe other
decomposition the isovector part satisfies a gauge
invariant “ Lorentz condition.” 7.8

The paper begins with a specification of the mathe-
matical and physical framework in which the analysis
is carried out. The transverse-longitudinal decom-
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position of the gauge potentials which is based on a
transversality condition is then defined and investi-~
gated. Utilizing this decomposition, we write the dy-
namical equations for the uncoupled YM field in the
Hamiltonian form and then, with the aid of the decom-
position, restate some known facts® on static fields.

We then study the structure of a configuration space
© consisting of YM potentials which are bounded and
which at spatial infinity are of order |x®|-2 and
which satisfy certain other special conditions.10 This
analysis starts within the framework delineated by
Loos0.11 and then shows some additional structure of
© which can be inferred from the transverse-longi-
tudinal decomposition.

Next a gauge and Lorentz invariant decomposition of
the potentials based on a “Lorentz condition”’ is given.
We indicate how the isovector part of the potential,
which is a functional of the total potential, can be used
to introduce gauge invariant, but spatially nonlocal
terms in the free YM Lagrangian. We then display an
isoscalar nonlocal interaction of the YM potential
with a spinor-isospinor field.

Finally, in the Appendix a Green's functional is exa-
mined which is essentially the non-Abelian generaliza-
tion of the Coulomb Green's function and which plays

a central role in the transverse-longitudinal decom-
position. This same functional also arises in the work
of Ref. 6 and in a study of charged states of the YM
field.19 A series representation of this Green's func-
tional is given, and its self-adjointness is shown.

2. PRELIMINARIES

Space~time is taken to be the Minkowski space where
time~-space coordinates are denoted by x¥,k, A, ***

= 0,1, 2, 3. Spatial coordinates are designated by

x% a,B, + =1,2,3. The Minkowski metric has the
signature +,—, —, —, so the spatial part of the metric
is negative definite. In the Minkowski space we con-
sider YM potentials b, where 4,7,++- = 1,2, 3 indi-
cate components in the Lie algebra space of the iso-
topic spin group SU(2). The spatial components b,
are assumed to be members of the configuration
space 2 as defined in Ref. 10. Q isdefined asthe space
of real-valued functions, which are subject to the
conditions that a real constant B exists such that

v ,;l =B, legb,;| = B, 2.1)
Ix2{3la,b,l = B.

Ixel >R, [x812lb,| =B,

There are a number of other conditions cited in Ref.
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8 which are required of potentials belonging to L,
These further conditions have been used to prove
existence of charged states and we do not make ex-
plicit use of them here.

It is sometimes convenient to use potentials FKé
(parameters of connections for isovectors) rather
than the b,;. The two are related according to
raij = bakckij’ (2.2)
where C, k are the structure constants of SU(2). The
Cartan metr1c is constructed by the prescription
gi].:Cik"Cjnk (2.3)
The g;, is used to raise and lower indices and is nega-
tive definite for SU(2), thus co- and the corresponding
contra-variant vectors in the Lie algebra space differ
by a sign. The bases in the Lie algebra space are
chosen such that g,. has the diagonal form. The bases
are thus arbitrary up to the local group of transfor-
mations which is orthogonal with respect to g,

which is thus just the adjoint representation of SU(2).

The gauge field constructed from the potentials b, ;
is given by

Bl =280, =030, — CjkibKjbf- (2.4)
For brevity the isotopic spin indices are sometimes
suppressed, and then we write

By = 0y — 830 — b X b, (2.5)
The field constructed from the potentials I' kij is
given by

q’x)xij = aKFAZ - a)\ r F)\] + FM rxjk (2.6)
Under local gauge transformations represented by

matrices, S ( “), the potentials I‘] transform as

FK? = S>l kiFKkmSjm (2- 7)
while &,, 7 is a tensor and transforms as
q)::)\ij = SZI ké&)\k msjm (2' 8)

Under an infinitesimal local gauge transformation

the change in the potentials b, ; is given by

0by; =— V. 1y (2.9)
where 7, is an isovector, and

M7 =7 (2.10)

is the generator of the local gauge transformation
Sifx*). In (2.9) V. is the symbol for gauge differen-
tiation. For a covariant isovector,

v.ni=2a.mnt +I"K]?'ni, (2.11)
or

V.t =9, nt— Cpytbfmi. (2.12)
For brevity we sometimes suppress the Lie algebra
indices, and then the covariant derivative of a con-
travariant vector is written as

v,n=3mn—b, xXn. (2.13)
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3. GAUGE-INVARIANT TRANSVERSE-LONGITU-
DINAL DECOMPOSITION OF THE YANG-MILLS
POTENTIALS

The longitudinal part of the space components of the
potential is defined as the solution b%* of the differen-
tial equations

3,08

— ab% — b X bt =0, (3.1)

3 b*e—b, X b*x=0, (3.2)
where algebra indices are suppressed. The trans-
verse part of b is defined as the difference between

b, and &% or, equivalently, as

bT = b, — bY,. (3.3)
It follows from (3. 2) and (3.3) that
apTe—b, xbla=0, (3.4)

We regard b’; and b as functionals of the independent
variable b, the functional relations being determined
by the dlfferentlal equations (3. 1), (3. 2), and the lin-
ear relation (3. 3).

The variation 66%, resulting from the variation &b,
satisfies the differential equations
V3ot = 0, (3.5)

(3.6)

v 6% —
v, 0bte = viobe,

where V¥ is a symbol for gauge covariant differen-
tiation with respect to the longitudinal part of the
potential. The derivatives v, and V? of isovectors
are again isovectors because b and 6* both transform
as parameters of a linear connection. However, it is
only the full potential b, which gives the definition of
parallel displacement.12 Equation (3,5) has a solution
if and only if 6b* can be expressed in the form

b} = Vix. (3.7)
Using (3. 7) in (3, 6) shows that x satisfies
v, V*ay = v¥obe. (3.8)

We assume the existence of a fundamental solution

D, , ;¥ of the differential equation

v, V¥Dd

exrit = 08 (x — x'), (3.9)
which satisfies the boundary conditions ® -0

as x|, [x'e|— 0, In (3.9),xx’ is short £5f %< the
prime on the index ¢ specifying a component at the
spatial point x’%, while the unprimed i specifies a
component in the local algebra space associated with
the unpr1med coordinate x%, On the right- hand side of
(3.9), 6,7 (x — x’) is short notation for 6;¢ 6(x1 — x’1)
8(x2 — x’2)6(x3 — x’3). In (3.9) the index notation on
D means that D ,,% is a function of the two spatial
points x and x’ with components in the algebra spaces

at x and x’. We shall also make use of the notations
0 ’
aBI = Ax'B ? bB' :bﬂ(x );
__90 /
VB/ _axlﬂ I"B(x ).

The above notations have been used by DeWitt.13
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By using D satisfying (3. 9), we express x formally as

x=J D668 ax’, (3. 10)

where the variations 6b8 of b belong to the configura-
tion space @ and algebra indices are suppressed. In-
tegration by parts yields

- * [ Ydx'

x=J VIO 668 dx + Ja,(D 068 dx".

If (3.11)
lx“HZD”r| =B, |x¢| -,

the integrals (3.10) and (3. 11) exist and the surface
integral of (3. 11) vanishes and we obtain

x=— fvg,@xx,ébﬂldx’, (3.12)
and, consequently,
6b’; — f V’;V*ﬂ :Dxxlébﬁ Adx’. (3.13)

From (3. 13) the functional derivative of b* is seen to
be

8B,

— _ uXxg*p’
B, = VEVED . (3.14)
The functional derivative of b7 is
002 , ,
=68 (x—x') + VXV*ED (3.15)
be, o o XX

as follows from the definition of b2 and (3. 14).

To decompose the time component of b, , we define a
part b% as the solution of

Bt —a,b%— b xbt=0. (3.16)
We suppose that a solution b3[b] of Eq. (3. 16) exists,
which allows us to define a remainder ¢ of the time
component §, by the linear relation

by=¢ + b3, (3.17)
To obtain a representation of the variation &b §, which

will be needed later, we take the variation of (3. 16) to
obtain

ViobY, — viebE = 0. (3.18)
A solution of (3. 16) is given by

by = Vix. (3.19)
With the aid of (3.12) we see that

oot =—vi [ v;,fDxx,GbB’dx’ (3.20)

To examine the transformation properties of the po-
tentials we consider local infinitesimal gauge trans-
formations, which are of the form

ob, = — A, (3.21)

o

where it is required® that n have the asymptotic be-
havior {x¢||nl =B asx —w,

To show the transformation properties of 5% and bl
under local gauge transformations, we consider the
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integral expression (3.13). For an infinitesimal gauge
transformation 6b, is given by (3.21), yielding

0% = — v* [ v*s v, mlx)dx’
* *g’ ; '
vafaﬂ,[v :D“,n(x )dx’.

For |xe2|D .l =B, |xelnl =B as [x*| -, the
last integral vanishes. By (3. 9) it follows that

ob* = — V¥n(x). (3.22)
Taking the variation of each member of (3. 3) and use
of (3.20) and (3.22) yields the isovector transforma-
tion rule

60T = bI X 7, (3.23)
The same procedure which was used to obtain the
transformation properties of 4% and b7, when applied
to b} and ¢, show that under a local gauge transfor-
mation generated by 1 that

0% =— Vin, Op=¢ X1 (3.24)
Thus, ¢ is the isovector part of the time component of
the potential.

The nonhomogeneous transformation law for 6% im-
plies that I'* transforms under a finite transformation
S as

r¥=s81r,s—s-13,8. (3.25)
The infinitesimal transformations shown to hold for
¢ and b7 imply that the time—space components

&) =—@*C,s, TIi=-—0bTrC,j (3.26)
transform as mixed isotensors under infinitesimal
and also finite local gauge transformations. That is,
under a local gauge transformation,

®' =515, T T=81TLs, (3.27)

Thus, we have decomposed the potentials (or para-
meters of connection T, ) into a tensor and a part that
transforms as a linear connection.

This type of decomposition has a counterpart in dif-
ferential geometry. It is well known that if a tensor
field is added to a given linear connection the sum is
also a linear connection.!4 We are dealing here with
the converse of this situation, where we have decom-
posed a given connection, presumably by a prescrip-
tion which gives a unique separation, and find that
one part is a tensor and that the other part transforms
as a linear connection, where, referring to (3.1) and
(3. 16), we see that the nonhomogeneously transform-
ing part has been defined in such a way that it is in-
tegrable. That is to say,

3% — 2T — [T T3] =0. (3.28)
This means that '} can be transformed away by a
local gauge transformation. Assigning a definite func-
tion T'} compatible with (3. 28) is equivalent to fixing
a gauge. We do not attempt to do this, but instead
carry the integrable part of the potentials along in
the theory in the spirit of Schwinger's method of
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“group parameters,”® thereby maintaining a system
of equations which are obviously gauge invariant, but
separating out the part (&, I'Z), or equivalently (¢,
bg), of the potentials which should be physically rele~
vant.

The full potentials b, are to be regarded at this point
as independent variables whereas bZ, b%, and b} are
functionals of &,. The vector part ¢ of b, can be taken
as independent as long as the YM field equations are
not imposed. However, when the field equations are
in effect, ¢ then becomes a functional of the spatial

potentials b .

This decomposition into a transverse and longitudinal
potential may be regarded as a generalization to
non-Abelian gauge fields of the gauge invariant theory
of the electromagnetic field given by Belinfante.l
Belinfante showed that by averaging over path depen-
dent potentials one could obtain a path independent and
at the same time, a gauge independent theory of free
and coupled electromagnetic fields. We have bypassed
introducing path dependent potentials and averaging
over paths, by decomposing the potentials of the YM
theory directly into a tensor and an integrable part,
where the integrable part carries the “divergence”

of the full potential. Our result reduces to that ob-
tained by Belinfante, as is easily verified, by setting
the structure constants equal to zero to achieve the
reduction to the Abelian case.

4. ON THE GEOMETRY OF THE CONFIGURATION
SPACE

We now look at certain aspects of the structure of the
configuration space §2 which follow from the assump-
tion that the transverse-longitudinal decomposition
exists and is unique. Following Loos!! we introduce
in the ‘“Euclidean” metric
gaﬂgijé(x—x'). (4.1)
This metric makes Q a Hilbert space. With (4, 1) the
square of the distance between two neighboring points
in © is given by
o112 = [ [ gog08,;:6(x — x7)obiob3 s dxdx’, (4.2)
which yields, after carrying out one of the x integra-
tions,

lobll2 =/ &b, (x)8bei(x)dx. (4.3)
Let X, denote the manifold of integrable potentials
b* in . Then, consider a set of potentials, say =(b*),
whlch consists of those potentials b, which have a
fixed longitudinal part 6% and a transverse part which
satisfies
v*apl =0, (4.4)
In a finite-dimensional flat space, a flat submanifold
is defined by a set of linear algebraic equations with
constant coefficients. Similarly, in the infinite-dimen~
sional Hilbert space © the linear differential equation
(4.4) for fixed b* defines a flat submanifold =(b*). As
we will show below elements — V*n for fixed #* are
orthogonal to Z(b*) at all b, <€ E (5*) provided 7 satis-
fies the conditions for x — « required of generators
of local gauge transformations. The manifolds =(b*)

INVARIANT DECOMPOSITION
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intersect X, at the points b = b*, which is to say at
the points of Z(b*) where bT =0. We are using this
point of intersection to label the manifold Z(5%) as our
notation indicates. The union of all manifolds_=(b*),

b* € X is the whole configuration space Q.

—

The set of potentials b < Z (b*) and the set of potentials
b, + b, ina neLghbormg manifold Z(b* + 6b*) are re-
1ated by a gauge transformation. For, to move from
b% < X, to a neighboring point 5% + Gb’& € X,,thelongi-
tudinal part of the potential is changed according to

ob* = — V*n, (4.5)
which insures that the new potential ¥ + &b¥ is also
integrable. In order for the transverse potential bT +
dbZto belong to E(b* + 6b%), it is necessary and suffi-
c1ent that

667 = bI X 7, (4.6)
as follows from (4.4). The change 6b,, is given by the
sum of (4,5) and (4.6) so that

6b, =—V n, (4.7

o

which shows that elements of neighboring Z(b*) mani-

folds are related by a gauge transformation.

A gauge invariant manifold is defined as a subset of
points in © which are related to each other by a local
gauge transformation. It is evident that the set X, of
integrable potentials is an invariant manifold. How-
ever, it is a special one inasmuch as it passesthrough
the origin of &. Let us call the set of gauge invariant
manifolds X. The X manifolds intersect the trans-
verse manifolds Z(b*). This is clear because we can
start at a point on Z(b*) and by performing all possi-
ble gauge transformations of this point generate a
gauge invariant manifold.

The manifold X, intersects the Z(b*) orthogonally. To

see this we form the inner product of vectors tangent

to X, and E(b*). The element — V%7 is tangent to X,

at b, = b*. An element 607 is tangent to Z(b*) if
v*eghl = 0. (4.8)

Variations 6b% satisfying (4.8) deserve a special no-

tation since an arbitrary variation 6b7 satisfies

V*aghl = — bT X Gb*e,

as can be seen by taking the variation of (3. 4). We
denote variations satisfying (4. 8) by (ﬁbT)

The inner product of the two tangent vectors is by
4.1),

(002,(067),4) = [ 56286 =) , dx

= [ 8 (n % (6bT),)dx =0, (4.9)
where we have used (4. 8) and (4.5). The last integral
vanishes because of the asymptotic behavior required
of members of £. The other gauge invariant manifolds
X are not generally orthogonal to the =(b*) at their
intersection. To see this we form the inner product
of the elements (5bZ),, and — V,n which are tangent
to £(b*) and X at b_. This gives
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J(we(8bT), nd* = — [TTepTnax,
(4. 10)

(— Van, (ﬁbg)b*) =

which does not always vanish,

It is tempting to try to find a submanifold of £ which
is orthogonal to the gauge invariant manifolds X,
However, as has been shown, such a manifold does not
exist.15 We show another proof of this in the frame-
work of the transverse-longitudinal decomposition.

First we note that any infinitesimal element 05, can
be expressed as the sum

v*oy; (4.11)

(667) , xsatisties (4.8) and &y is an undetermined in-

finitesimal isotopic vector field. This is a slight ge-
neralization of the statement that a vector field can
be represented as the sum of longitudinal and trans-
verse fields. We wish to construct an element ortho-
gonal to X at . A necessary and sufficient condition
for the orthogonahty, inferred by inserting 6b
place of (6b7), in (4. 10) is

veapb, = 0. (4.12)
Imposing this condition on (4. 11) shows that 6 must
satisfy

vevisy = Tla(6b2), 4 (4. 13)

Using the fundamental solution fD”,,we obtain from
(4. 13) the functional derivative equation

W\ _q i
(), =2t

where the functional differentiation is taken keeping
b* fixed, so that the b* appear as parameters in this
equatmn The solution Y of (4. 14), if it would exist,

defines a functional on E(b*). Figure 1 is shown to

illustrate the situation.

(4,14)

X

5ba .
% sy
\ E4
\\ (de)b*
\
\
1

Illustration of the construction of 6b, orthogonal
to a gauge imvariant manifold at a point.

FIG. 1.
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The vector field tib(x in a neighborhood of b, defines

a manifold, which is tangent to the b, and whlch is
orthogonal to manifolds X, The constructlon of the
tangent field &b, in a neighborhood of a point is possi-
ble if and only if the solution ¢[b7, b*] of the functional
derivative equation (4, 14) exists in the neighborhood
of b,.

In order that (4. 14) has a solution it is necessary that
the alternating functional derivative of the right-hand
side vanishes. Thus it is necessary that

Ta . _i T"‘z
ObT (D, ') o (Dy,, T ) (4.15)
o
vanish,
To compute the functional derivative of £, + we need

the expression (A6), derived in the Appendlx, general-
ized to hold on any H(b*) manifold. The correct ex-
pression for the functional derivative is obtained by
replacing the partial derivative in the right-hand
side of (A6) by the longitudinal covariant derivative
v¥*, which gives

6D, ,iz" 5 ke y
e At e, L (4. 16)
OLZZ
Use of
érT"‘lif'x
o Cklilhgalaz glzklﬁ (xl—xz) (4.17)

ébgziz

in conjunction with (4. 16) shows that the integrability
condition is not satisfied and, hence, that the functional
Y does not exist. We infer from this that there does
not exist a manifold orthogonal to gauge invariant
manifolds in a neighborhood of 5.

5. HAMILTON EQUATIONS OF MOTION AND THE
STATIC YM FIELD
A. The Hamilton Equations

The principle of stationary action, for the Lagrangian
density

&£ = 3B, B (5.1)
yields the YM field equation
v B, ; =0, (5.2)

The momentum conjugate to b, is defined as

oL
T = =B (5. 3)
o a(a()ba) Oo?
where we are now suppressing algebra indices. The
definition of 7, and the transverse-longitudinal de-
composition show that we can write the momentum as

Ty=VEbL—V o. (5.4)
From the YM constraint equation we have

V B% =0 (5.5)
and from the decomposition, it follows that

v =0, (5.6)
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Vine =T X e, (5.7)

By (5.7),(5.4), and use of the functional ® , we obtain
xx

—_ T o ’ ’
¢ = f:Dxx/ba/Xﬂ dx’, (5.8)
where we have used the transversality condition and
the commutivity of V# and v¥. Equation (5. 8) shows,
as is well known, 16 that the time component of the
potential should not be regarded as an independent
variable.

The spatial components of the YM equations, with the
aid of (5. 3) and the decomposition of the time com-
ponent of the potential, acquire the form

VEr,=¢ Xw,—VyBB,, (5.9)
The Hamiltonian density is now defined as

H=4m,,m%— 3B 4,BP®i+ 12V ¢ (5.10)
Let us take variations of the Hamiltonian

H= [ %dx (5.11)

on a fixed Z(0* ) manifold. That is, we keep b¥ fixed
and take the variation of H in directions tangent to
Z(b¥) with time held constant. For fixed b% we obtain

6H:f<_(pxﬂa+VBBBa+ fnﬁlvﬂlfg%dxjﬁbgdx.

¢ (5.12)
Imposing the constraint equation (5. 6) then yields
o8 _ oy xpa+ v,Bbe, (5.13)
6b1

Functional differentiation of (5. 11) with respect to
7, shows that

6H

ore Tat Va?:

(5.14)

Collecting results we have the Hamilton equations

24

Vine = — o, (5. 15)
0 obI
vipr = A (5. 16)
one

These equations must be supplemented with the de-
finitions of b and ¢ (Eq. 5. 8) and the constraint of

7, [Eq.(5.6)]. It is understood in (5.15) that the func-
tional derivative is taken tangent to an arbitrary
E(b*) manifold at a fixed time.

There are integrability conditions to consider for the
Hamilton equations. Taking the divergence v*® of
(5. 16) yields

VEHV*abT) = v'ag + V¥ay g, (5.17)
According to the definition of ¢, (5. 17) becomes
Vo(V*apD) = v . (5.18)

If the constraint equation is satisfied, the right-hand
side vanishes and we obtain the integrability condition

INVARIANT DECOMPOSITION
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v3(V*epl) = 0. (5.19)
The implication of (5.19) is that if b, =6+ b* belongs
at some time { to a manifold E[b*(#)] then at a later
time ¢ + dt, b (¢ + dt) will lie in the manifold Z[b* +
(db*/dl)dt]. Therefore,the tranversality condition on
b7 will be satisfied at ¢ + dt. Thus, if the tranversa-
lity condition is imposed at one time, the Hamiltonian
dynamics insures that the condition is satisfied at all
times. This means that we do not needto acknowledge
explicitly in the Hamiltonian equations the functional
relation (Eq. 3. 13) between 67 and the full potential
b, Rather we can choose b? at ¢ as an arbitrary in-
tegrable potential, which merely fixes theinitial mani-
fold, choose initial conditionson 7 such that the gauge
invariant transversality condition is satisfied on
Z[b*(1)], and then the transversality condition is auto-
matically satisfied at later times.

In cases where b* would be taken independent of time,
the Hamiltonian dynamics leaves the potentials in a
fixed Z(b*) manifold. For example, the transverse
gauge b* = 0, where aabT“ = 0, is of this type. The
gauge b; = 0 investigated in Ref. 16 requires a time~
dependent b* in order to maintain the relation

by + b% = 0. (5.20)
The constraint (5.6) on 7, is also compatible with
the Hamilton equations. If m  is gauge covariant di-
vergenceless at an initial time, the evolution in time
of 7, determined by the Hamilton equations maintains
this condition.

B. Transverse Momentum and the Static YM Field

The transverse momentum is defined as

ml = Vbl (5.21)
and has the property

vrapl =0, (5.22)
Substituting

Te=TL—V 0 (5.23)

in the constraint equation and using (5.22) shows that
the time-component ¢ satisfies
ViV @ =—blax g, (5.24)
Let us assume the existence of a fundamental solution
5”, which satisfies

vev,8, it =6 (x — x’). (5.25)
Then formally
o= [8 T xaldx'. (5.26)

Introducing the decomposition (5.23) and the repre-
sentation (5. 26) in the Hamiltonian density yields

_ 1T _T.; 1 Bi oo T i
H= [Gn'a%ei— 4B B*ax +3[[8 /0T x e
X (6T, x 7 78") dxdx’, (5.27)
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where, for clarity, we have reinstated some of the in-
dices. The longitudinal part of the momentum has
thereby been eliminated from the Hamiltonian.

We go on now to consider the static YM field. There
can be some confusion in a local gauge theory as to
the meaning of a static field since potentials which
are time independent in one gauge may depend on
time in another gauge. Loos? has clarified this prob-
lem by stating gauge invariant conditions satisfied
by “static” fields. We take a result developed there
and restate it in the context of the transverse-longi-
tudinal decomposition. Let us adopt the following as
a definition of a static YM field; the YM field is sta-
tic if and only if the tranverse momentum vanishes.
This is a gauge invariant statement since 77 is an
isovector. For vanishing 77, the constraint equation
implies that

vev ¢ =0, (5.28)
It has been shown? that for [x%|2|¢l< B as x = o,
and we have insisted on this asymptotic behavior here,
that (5.27) has only the null solution. Thus, for static
fields, as we have defined them, the Hamilton equa-
tions for the YM field become

vl =0, V4B 5=0, (5.29)
and the constraint equation is
¢ =0. (5.30)

6. A LORENTZ AND GAUGE-INVARIANT DECOM-
POSITION OF THE GAUGE POTENTIALS

The transverse-longitudinal decomposition, being
based on the transversality condition, is of course

not Lorentz invariant. One can achieve a Lorentz
invariant decomposition by proceeding in the same way
as we did in Sec. 4, but with the Lorentz condition re-
placing the transversality condition.? The resulting
decomposition yields in the special case of an Abelian
field the invariant electromagnetic potentials obtained
by Rohrlich and Strocchi2 by their method of averag-
ing over paths of the path-dependent potentials of
DeWitt3 and Mandelstam.4

Thus, we define an integrable part of b, and the solu-
tion of the equations

3.0% — 3 b*—br x b* =0, (6.1)
ATk KA A K

2,b*} — b, X b*r = 3,bM. (6.2)

In these equations the b, are independent. A variation
of b, causes the change b} which satisfies

VX6b* — V*6bt = 0, 6.3)

V,0b*A = VXobr, (6.4)

Equation (6. 3) implies that 567 is the gradient of an
isovector, say y. Then, for (6.4) we have

VAVEy = V*Aob,. (6.5)

We assume the existence of a fundamental solution

g , i which satisfies
xx 1
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vAv*F = iy — &),
1

X xx'i

(6.6)

where x now refers to time-space components x*.

Then 64} can be expressed formally
obY =vr[F v*Neb dx. (6.7)

For variations vanishing on the boundaries |x¢| = «
and x0 — + «© we obtain

* — * PN 4
6b* S V* RS 0b dx. (6.8)
and consequently
éb: k__ %kt
= — A
5[))\’ VKV E}:xx'. (6.9)

An isovector 4, is now defined as the difference be-
tween the full potential b, and b} or, equivalently,

b, =b, + b}, (6,10)
If follows from (6. 10) and (6. 2) that

vrkb =0, (6.11)
From (6. 10) and (6.9) we see that

06, , ,

== =0MN(x =) + VIVANT . (6.12)

Gb)\, K K

For infinitesimal local gauge transformations genera-
ted by 7, where

lxelInt =B, lxo| —>«,

n= 0’ ,xO ="z x,
the 6, transform as isovectors, while b* undergo the
change

ob* = — Vin. (6.13)
Using the decomposition (6. 10) we express the gauge
field in the form

B, =V, —V¥,. (6.14)
Taking the divergence V* of (6. 14) and using the
commutativity of V* and v *, which is a consequence
of the integrability of b}, yields

V<Y, b, = V*B,,. (6.15)
With the functional &, , we obtain
b =— [v*S, B, dx'. (6. 16)

This equation has the same form as the representation
of the electromagnetic potentials given in Ref. 2. How-
ever, here the potentials occur explicitly in the inte-
grand through the covariant derivative v*< and the

functional §__,.

For the electromagnetic field the gauge covariant
derivative in (6. 16) becomes the derivative 3«, the
functional ¥, , becomesthe Green's function |x — x'|-2
of the de Alembertian operator, and (6, 16) acquires
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the form
R, =— [a<'|x—x'|-2F, \dx’, (6.17)
where
F,=03A,—0,4, (6.18)

is the electromagnetic field tensor and A, are the
electromagnetic potentials. The &, are the gauge in-
variant potentials obtained by Rohrlich and Strocchi.?
The same expression for an invariant potential has
been obtained by Goldberg!? by unitary transforma-
tion of electromagnetic potentials coupled to a spinor
field.

Via (6. 18) and

9 0% lx —x'172 = 8lx — x') (6.19)
in (6. 17) yields
®R,=A, + fa“'a%lx —x1{2A rdx'. (6.20)

From our point of view the last term is the integrable

part A} of the full potential A,, and (6.20) gives us

the decomposition
A, =R, + A}, (6.21)

where the functional A’; is defined by the integral in
(6.20).

As we have seen, the decomposition of the form (6. 20)
admits a generalization to non-Abelian gauge fields.
However, the fact that the functional @, can be ex-
pressed in terms of the field alone seems to be an
accident due to the non-Abelian property of the elec-
tromagnetic field.

The generalization of the decomposition (6.20) to the
non-Abelian case yields the homogeneously trans-
forming part 6, which is a functional of the full po-
tential and cannot be expressed in terms of the field
B, alone.

7. NONLOCAL LAGRANGIANS

One can use the transverse-longitudinal decomposi-
tion or the decomposition based on the Lorentz condi-
tion to form functionals which are scalars under local
gauge transformations. For example, the “massive”
YM Lagrangian

1 an_ 1 2 T,T

1B, B — (g2 + bTp"e) (7.1)
is invariant under local gauge transformations; but it

is not Lorentz invariant. Further, it is nonlocal
since ¢ and bZ are functionals of b,.

Using the expressions for the variations of ¢ and bg
which were obtained in the analysis of the transverse-
longitudinal decomposition, the action principle

6 [li BB — 5ulg? + blb o) |axdt = 0 (7.2)

gives the nonlocal field equations

— V,Bxg — pbl + [ViD,_  Vielx')dx' =0, (7.3)
—V.Bg— pg =0. (7.4)
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Taking the divergence V?® of (7. 3) and the time deri-

vative vO of (7.4) and adding the resulting equations

shows that
VBbT = 0 (7.5)

is an integrability condition for the equations of mo-
tion and constraint.

A gauge and Lorentz invariant mass term can be
constructed with the aid of the decomposition

b, =06+ b* (7.6)
We form the Lagrangian
& = 4B BN — jub, b* (7.7

which is nonlocal since 4, is a functional of b, . Using
the variation of 6K givenby (6. 12), the action principle
yields

* .

— 9, Br, —pby —p V< VIS, b dx'at = 0. (7.8)
If the Lorentz condition (6. 11) is acknowledged, we
obtain the field equation

—~ VyBE, — ub, = 0. (7.9)

The Lorentz condition (6. 11) is now an integrability
condition for (7.9).

The invariant decompositions may also be used to
couple the YM field invariantly to other fields. For
example, consider the spinor—isospinor field y/,;2
where 7,j, = 1,2, 3 are algebra indices and a, b, - - -
= 1,2, 3,4 are Dirac spinor indices. We take the
Lagrangian density

£ =3B, BN i, v 0V Y — my, Yl (7.10)

for which the action principle gives the field equa-
tions

VB = iCijk‘VjYA‘pks

T Y, =0,

(7.11)
(7.12)

where spinor indices are suppressed and ¥ 7 = Eia is
the adjoint spinor. Introducing the Lorentz and gauge
invariant decomposition (7. 6) into Eqs. (7. 11) and
(7.12) gives for any basis ¢’

VEBX i = Clhrin 0 BS K+ LOPAP ARAE YN 2 (7.13)

bRV, — MY = Gy VSO (7.14)
The self- and external coupling terms in (7. 13) ard
(7.14) are gauge scalars, but nonlocal because 6K is
a functional of 5, . We do not attempt to attach any
physical significance to the integrable part b} of

the full potential. Rather, we regard the b* in some-
what the same way as one would view parameters of
a linear connection for event vectors which arise in
the flat Minkowski space as a consequence of using

curvilinear coordinates.

In the theory of the classical field, which is pursued
here, the functionals b} can be removed entirely
from the theory by a process which in tensor analy-
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sisl? ig called strangling of indices. Let us take
basis vectors ¢ ;, in the algebra space which are

adapted to the Lorentz gauge. That is, in the gauge
b¥* = 0,choose basis vectors

Il %

0%

13
€, (7.15)
where the = means that (7.15) is asserted only in
bases such that 5% = 0. The index ¢ in (7. 15) is dead
and serves only to label the independent basis vectors.
A change in the local isobases represented by the
local orthogonal transformation matrix S/, gives new
components for the basis vectors !

1

i
=57, .
e, 1€ (7.16)

It follows by use of the nonhomogeneous transforma-
tion law (3.26) for I'} that, in any basis j’,

v*e, = 0. (7. 17)

i
Equation (7. 17) shows that we should regard the ba-

sis vectors é]., as functionals of F’: which in turn
are functionals of the full potentials L,

The free indices inEqs.(7.13)and (7. 14) are strangled
by transvection of these equations with the basis vec-

tors ¢;,. Then, with the aid of the property (7.17),

transvection of (7.13) and (7. 14) gives

ik
i< 3,4 —my = C b, (7.18)
z i
j k
3, B<A = Cyb, Br, +iC, kzpyxw, (7.19)

where we have placed the isogpin index above or be-
low the kernels (except for the structure constants)
to emphasize that all the isospin indices in (7. 18)
and (7.19) are dead and are not subject to gauge
transformation. Equations (7.18) and (7.19) thus in-
volve only isotopic scalars.

We could apply the same method of strangling indices
to the Hamiltonian form of the YM equations. There,

one would choose basis vectors e?.a.dapted to the trans-

verse gauge where, in the bases such that

1%

a pTa2o, o.2o, (7.20)

the basis vectors are given by

3 _* i
g =125, (7.21)
and the vectors é. in any local base j’ satisfy
i
v*; e, =0, v;; 5 =0 (7.22)
8. REMARKS

The arbitrariness of the YM potentials up to local
gauge transformations is not a source of difficulty in
the theory of the classical field. One removes the
arbitrariness by fixing a gauge by the imposition of

a gauge-variant condition on the potentials. However,
when one attempts to fix a gauge in a quantized theory,
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just as in quantum electrodynamics, the problem of
compatibility of the gauge conditions, field equations,
and the quantum rules arise. One of the motivations
for this study was that the gauge-invariant decom-
positions of the potentials might be useful in the quan-
tum theory.

There are several apparently different quantized theo-
ries which have been shown to be gauge and Lorentz
invariant.6.19.20.11 Whether these theories are physi-
cally equivalent seems not to be known. If one follows
the ideas of Schwinger,® the b§ of the work here

would be identified as the true quantum variable while
the b’; would play the role of Schwinger's group para-
meters. If it would be possible to develop a consis-
tent quantum theory with this identification, it should
be manifestly gauge invariant. In Loos' canonical
quantizationl! the secondary constraint on the YM
field is vor W = 0, where ¥ is a quantum state func-
tional. This constraint is satisfied by any state ¥ [b,_]
which is invariant under the change b, — b — v,
i.e.,under a gauge transformation generated by

n where |xa|2n < Bas ix®| - w, The secondary con-
straint is satisfied automatically be states which are
scalar functionals of the homogeneously transforming
quantities b2[b], v bZib], Vv, Vabi[b]. For example

v :exp<ffbgibT“idx>, Ixe|2 byl =B, (x4 — e,

is such an invariant functional. If one adopts the
canonical quantization rules of Ref, 11 for b, and 7,
then possibly the quantum rules for b7 and nT are to
a large extent committed. But these rules have not
been worked out.

After constructing the gauge scalar functional ® ,
Rohrlich and Strocchi? found quantization rules for
the & which are manifestly gauge and Lorentz in-
variant. It may be possible to carry out a similar
program for the homogeneously transforming func-
tional (JK. However, one anticipates complications
which usually attend attempts to generalize an
Abelian to a non-Abelian theory.
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APPENDIX: A SERIES REPRESENTATION OF D__,

The functional D, _,, which was encountered in the
study of the transverse-longitudinal decomposition of
the gauge potentials, was defined (Sec. 3) as the solu-
tion of the equations

vevi® V=0 & —x'). (A1)
Equation (A1) is the gauge invariant version of
899 Dy, — TT id f,D“,] =8, (x —x'), (A2)

where I'Z,7 are the transverse potentials in the trans-
verse gauge i.e., 8,7« = 0. The functional D_,,
which satisfies (A2) arises also inthe quantum theory
of the YM field studied in Refs.6 and 10. We derive in
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this appendix a series representation of ®, ,. To
generate the series, we first derive the functional de-
rivative equation which is satisfied by D,,,. Let D__,
denote the variation brought about by the variation of
the coefficients in (A2). It is understood that the
variation is taken within the transversality condition
so that I'7 + 6T'T also satisfies the transversality
condition. Taking the variation of (A2) shows that
6D, ,, satisfies

!

9 ad 5:3)”,1 rgijaas)“,Ji’ =6T1,i02D 7. (A3)
If ©_,, exists, then we can write the integral repre-
sentation
i FAN !

6D, ,,;} = [D,, 00, ;18D fdx;. (A4)
Then the functional derivative of D, is given by

ODpxr” D, if (A5)

—_— = la 1:’D

] ’
6T %, i, " R

For later use it is convenient to have (A5) in terms
of bI. The equation

O:Dxxlii, B zD ilc ]1:D i (A6)
5T k1 T T kg ¥
a

i
has the same mathematical content as (A5) and is

easily deduced by introducing the structure constants
and b7 in the integrand of (A4).

Let us try to express the solution of (A5) as a power
series of functionals® (a Volterra series) at the
origin of ©, i.e., at the point 'l = 0, I'* =0. We write
formally

o 1

6D, 1, T

= .y xx'i j
:Dxxlil ::Dxxlil + fxl T i, ]‘—‘otlt1 ldxl
61"0”1»1
52D
1 xxfz T j
+ 2fx1fx2 T 5T 7, Ty ip %y dx, +
éraziz Gralil
1 f f o :Dxxlt
t— s t, T T
5Fa PRLEEE éra e
nin it
T ho..p? 3
x Tyt Ly, mdx dx,. (A7)

The bar over the D indicates that the functional de-
rivatives are evaluated at ', = 0. The first func-
tional derivative is obtained from the functional de-
rivative equation itself. The higher order functional
derivatives are obtained by repeated functional dif-
ferentiation of (A5) and the subsequent use of (A5) to
eliminate the derivatives from the right-hand side.

For example, for the second functional derivative we
obtain

o :D , ) )
xx z =D .zzaaz:D .11 alfD i
- XXo1 Xo Xy d xx7j
6]:.,T ]261-' 2 27172 1
ag iy ‘!1’1
i’
g%y t2a%2

-1 .
+ Dxxlz 0 :Dxlxzjl XpX 1jy

For each term in the Volterra expansion (A7) we can
collect under the nth integral the n! terms of the nth
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functional derivative and, thereby, obtain

D, 01"

T
1
xx!i xw i dxl

oty
f la I:D i2 . e
xxlz X, 0

X% 0
(A8)

fxl XXy lla I:Dx 1%¥77, F
vt S
ir T

x %2 .

In e
XpX'ip Oy iy dxl dx

Suppressing the isotopic spin indices and the space
coordinates we write (A8) in the compact form

D=D*[6+T ™0, D+ T "9, D*r %23, D

To o Ta w~
+...+(r‘ 1aa1:D*...*1" naan:D).{....], (Ag)
where the second factor on the rlght hand side of
(A9) is a geometric series in T Tag oD. In (A9), 0 is
the Dirac—delta function and we have used the * sym-
bol to indicate integration.

Schwinger® has noted that D is self-adjoint. To prove
this we will examine the series (A8) term by term.
First we note from the defining differential equation

(A2) that it follows that D evaluated at T', = 0 is given
by

Dy =08/ lx —x'l. (A10)
Equation (A2) also implies that

9,D,,. =068,/ lx—x'l. (A11)

It is easy to show the self-adjointness of D if we in-
troduce (A10) and (All) into the Volterra expansion

(A8). Then (A8) becomes
D = eyt [ 1T
#20 y — x| #y |w—xy | ey
1 1 T i
X 0% — = dx. 4+ e + oee . S
|x1—x’l 1 f"1 J;‘n lx—xll %
X a"‘x._l__. r, ; “a%n
ixl—le rnn
1
X —————dxy "+ dx
|xn_le 1 n (A].Z)
and the adjoint of D, ;% is
i 1 ; 1 .
D, V= ——— bV + I —
S P T fxxlxl—xll ‘
a 1 T it
x g ! dx. + - + — T )
lx; — x| ! f"x j;n lxl —xy | 0
x 3% ___1__1-2 i”iaa”——l——dxl---dxn
lxy — xg1 " Ix, — x|
(A13)

Use of the divergenceless and anti-self-adjoint pro-
perty of I'’# parts integration, and the self-adjoint-
ness of 1/ |x — x’| permits rearrangement of the
terms in the integrands of (A13) so that it is evident
that

D =D i

xx1i x'x i°

(A14)

The convergence of the series for D is not considered
here except to note that if 42 is a member of the con-
figuration space Q then each multiple integral in the
Volterra series exists for x = x’'.
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We consider some mathematical aspects of the problems of defining restrictions of quantum fields and com-
mutators of such fields to null planes. We give precise meanings to these restrictions and discuss how these
lead to unambiguous derivations of the usual formal results. We discuss and relate various definitions of null
plane charges and derive some of their properties such as vacuum annihilation. We define and exhibit finite
null plane restrictions for causal solutions of the Klein—Gordon equation. Commutator functions defined by
integral representations with various spectral functions are then considered. Light cone operator product
expansions are used to calculate some null plane current commutators. In this way we can give precise
derivations of Fubini sum rules and electroproduction structure function asymptotic behavior.

1, INTRODUCTION

There is growing evidence that many interesting phy-
sical processes can be understood in terms of the
behavior of quantum field operators near the light
cone (LC). In this paper we shall study some mathe-
matical aspects of this LC physics. This will, on the
one hand, put some previous work on a sounder
mathematical footing and, on the other hand, will indi-
cate ways to extend the domain of applicability of L.C
techniques.

One of the earliest encounters of the LC in particle
physics was the observation that the infinite momen-
tum techniques!>2 of current algebra lead to state-
ments about the LC commutator of the currents.3 In
order to describe this development, we consider the
forward spin-averaged connected covariant retarded
current-proton scattering amplitude

7% = i [d4x eiexg (o )p [ (x),d% (0)]1 p)
+gpigyidabczc(0)=PppyT§b(K7V)+ M (1.1)
Here v = ¢p, &k = ¢2, p2 = 1, and we have allowed for

the presence of an operator Schwinger term of the
form appearing in

6(x o)[Iglx), 2(0)] = if e Jg (0) + idetczc(0)a,0(x). 1.2

In this paper we shall explicitly consider only the
SU(3) vector current J‘f(x) although all our equations
can be immediately generalized to include the axial
vector currents. The absorptive part of (1.1) is

Wb = (1/2n) fdtx eia={p|[Jetx), T2 (O)]| p)

= Db, WPk, V) + -+ (1.3)
so that

W, = (1/7) Im T,. (1.4)
We write

Tét)ab - %(Tzab + Tg“)
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and similarly define W92

The currents are, of course, assumed to satisfy the
local chiral algebra

8@ J5te), JG0)] = if abe I § 64 (x) (1.5)

etc. When this relation is expressed in terms of a ¢,
integral of (1.3) with q fixed, and an infinite momen-
tum limit is taken inside of this integral, there re-
sults the Fubini-Dashen—Gell-Mann sum rule2

Jav wad(k,v) = — fevcFe, (1.6)

where we have defined the forward form factor by

i, Fe = (p|J5(0)1p).
Equation (1. 6) corresponds to the asymptotic behavior
Té‘)ab(K,V) - (1/v) fabe Fe
in the Regge limit (R limit: v — o, k fixed) character-
istic of a fixed pole in the complex j plane at j = 1.4

Because of the need for the above infinite momentum
assumption, (1. 6) is not implied by the equal-time
commutation relation (1.5), but rather by the LC com-
mutation relation3,5

§ fax, 6 (c)[Jo@), JH0)] = if ©#<Jo(0) b ,%,).

Equation (1. 6) follows immediately from (1. 7) by in-

tegrating (1. 3) over v in the frame g_ = 0,9 = (1,0),

in which

Tgb(k,v) = i [d4x eiaxg(xy){pI[Jakx), I20)]] p)
__dabec yc (0)’

(1.7

{(1.8)
Web(,v) = i Jdtx eiax(p|[Ja(x), J20)]Ip) . (1.9)

The relation (1.7) is, however, a formal one since the
indicated formal operation on the left side need not
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We consider some mathematical aspects of the problems of defining restrictions of quantum fields and com-
mutators of such fields to null planes. We give precise meanings to these restrictions and discuss how these
lead to unambiguous derivations of the usual formal results. We discuss and relate various definitions of null
plane charges and derive some of their properties such as vacuum annihilation. We define and exhibit finite
null plane restrictions for causal solutions of the Klein—Gordon equation. Commutator functions defined by
integral representations with various spectral functions are then considered. Light cone operator product
expansions are used to calculate some null plane current commutators. In this way we can give precise
derivations of Fubini sum rules and electroproduction structure function asymptotic behavior.

1, INTRODUCTION

There is growing evidence that many interesting phy-
sical processes can be understood in terms of the
behavior of quantum field operators near the light
cone (LC). In this paper we shall study some mathe-
matical aspects of this LC physics. This will, on the
one hand, put some previous work on a sounder
mathematical footing and, on the other hand, will indi-
cate ways to extend the domain of applicability of L.C
techniques.

One of the earliest encounters of the LC in particle
physics was the observation that the infinite momen-
tum techniques!>2 of current algebra lead to state-
ments about the LC commutator of the currents.3 In
order to describe this development, we consider the
forward spin-averaged connected covariant retarded
current-proton scattering amplitude

7% = i [d4x eiexg (o )p [ (x),d% (0)]1 p)
+gpigyidabczc(0)=PppyT§b(K7V)+ M (1.1)
Here v = ¢p, &k = ¢2, p2 = 1, and we have allowed for

the presence of an operator Schwinger term of the
form appearing in

6(x o)[Iglx), 2(0)] = if e Jg (0) + idetczc(0)a,0(x). 1.2

In this paper we shall explicitly consider only the
SU(3) vector current J‘f(x) although all our equations
can be immediately generalized to include the axial
vector currents. The absorptive part of (1.1) is

Wb = (1/2n) fdtx eia={p|[Jetx), T2 (O)]| p)

= Db, WPk, V) + -+ (1.3)
so that

W, = (1/7) Im T,. (1.4)
We write

Tét)ab - %(Tzab + Tg“)
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and similarly define W92

The currents are, of course, assumed to satisfy the
local chiral algebra

8@ J5te), JG0)] = if abe I § 64 (x) (1.5)

etc. When this relation is expressed in terms of a ¢,
integral of (1.3) with q fixed, and an infinite momen-
tum limit is taken inside of this integral, there re-
sults the Fubini-Dashen—Gell-Mann sum rule2

Jav wad(k,v) = — fevcFe, (1.6)

where we have defined the forward form factor by

i, Fe = (p|J5(0)1p).
Equation (1. 6) corresponds to the asymptotic behavior
Té‘)ab(K,V) - (1/v) fabe Fe
in the Regge limit (R limit: v — o, k fixed) character-
istic of a fixed pole in the complex j plane at j = 1.4

Because of the need for the above infinite momentum
assumption, (1. 6) is not implied by the equal-time
commutation relation (1.5), but rather by the LC com-
mutation relation3,5

§ fax, 6 (c)[Jo@), JH0)] = if ©#<Jo(0) b ,%,).

Equation (1. 6) follows immediately from (1. 7) by in-

tegrating (1. 3) over v in the frame g_ = 0,9 = (1,0),

in which

Tgb(k,v) = i [d4x eiaxg(xy){pI[Jakx), I20)]] p)
__dabec yc (0)’

(1.7

{(1.8)
Web(,v) = i Jdtx eiax(p|[Ja(x), J20)]Ip) . (1.9)

The relation (1.7) is, however, a formal one since the
indicated formal operation on the left side need not
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be well defined. A major purpose of this paper will
be to study such questions.

The simplicity of (1.7) is directly reflected in a sim-
plified Feynman diagram structure in nice theories
for good currents in the infinite momentum limit. It
was, in fact, early observed that, for good-good free
field current components, the three-particle inter-
mediate state contribution to the equal time commu-
tator vanishes in the IM limit. These IM techniques
were then exploited by Weinberg,® wha showed that,
for simpler scalar field theories in the IM limit,
many undesirable diagrams disappear and the re-
maining ones can be described by new Feynman rules
involving integrals over two-dimensional transverse
momenta. Similar results were afterwards obtained
in other models.?

Weinberg's results were generalized and formalized
by Susskind,3 who emphasized the relevance of the
two-dimensional Galilean group. Susskind, and inde-
pendently Bardakci and Segre,3 also notice that the
IM limit of an ordinary formal charge

QUcg) = [d3xd o)
is, apart from a scale factor, a null plane (NP) charge

Qu.) = [dx.dx, J (x).

(1.10)

(1.11)

The connection with (1.7) is clear: If the IM limit can
be taken inside of the sum over intermediate states
implicit in the ET commutation relation (1. 5), the LC
commutation relation (1.7) is obtained. Thus this
interchange is formally equivalent to the interchange
of the IM limit and the g,-integration mentioned be-
low in Eq. (1. 5).

Bardakci and Halpern8 carried further the exploita-
tion of the Galilean subgroup and constructed Gali-
lean-invariant interacting relativistic systems. Quan-
tum electrodynamics has also been formulated from
this point of view.?

An independent source of evidence for the signifi-
cance of the LC appeared when it was recognized©
that the behavior of scattering amplitudes in the
scaling limit11 is controlled by the behavior of rele-
vant matrix elements of current operators near the
LC. The assumption of exact scaling then determines
the strength of the leading LC singularities.12-14 Tt
is emphasized in Ref. 13 that exact scaling is for-
mally equivalent to the existence of LC restrictions
of certain components of the current commutator.

These works, however, do not predict scaling but only
show that it is equivalent to other assumptions.
Somewhat more predictive statements became possi-
ble when it was shownl5 that the behavior of products
of local field operators near the L.C could be des-
cribed in terms of operator product expansions. In
this framework the scaling is equivalent to the effec-
tive canonical dimensionality of the fields in the ex-
pansions.15 The existence of these canonical expan-
sions gave rise to a number of further fruitful appli-
cations of LC physics.16,17 It seems possible that
even the ordinary Regge limit can be described in
these terms.18

A connection based on a universality assumption
between these two situations (the IM limit and the

1715

scaling limit), where the LC is relevant was proposed
in Ref. 10, This proposal was further studied in Ref.
12, and an operator generalization was compared with
the canonical operator product expansions in Ref. 19.
The universality statement was
L [ax, 60 )e(,)[da(x), 750)]
= — idabc %{M_lp—v SC(O)}ﬁ(x-— ,xJ_)

or, with (1. 7),
Jax, 5(x) 8(x,) [72(x), J4(0)]

=} iM[fabeMJE(0) — dobeP_Sg,]6(x., %.). (1.13)

1.12)

Here P, is the total momentum operator,M2 = PP,
and S¢(x) is the local scalar density in U(12)
(z ¥Aey in the free quark model).

Precise definitions of expressions like (1.12) and
(1.13) will be discussed in Sec.2. Let us now, how-
ever, proceed heuristically and note that, via the
methods of Refs. 10 and 12, (1.11) is seen to imply
the existence of a finite Bjorken asymptotic limit
(limit v » ©, w = — ¢2/v fixed):
yW§I20k, v) - Fg(w). (1.14)
The asymptotic structure function is related to the
Fourier transform of the light cone restriction of

Jax (pI[Ie(),d8(0)] | p)= 6(x,x )TMablx,,x)  (1.15)
according to
Fgw) = (i/27) [ dx emhoe(d)IMe (21, 0).  (1.16)

The presence of the 8(x,x_) factor in (1. 15) follows
from causality.1? The existence of (1.16) follows
from (1.11), which implies the existence of the inte-
gral

% [dx, e(x,) 39Me0(x,, 0) = — idabeDe, (1.17)

Here we have defined the forward scalar form factor

De = (p|Se(0) | p). (1.18)
Equations (1.16) and (1.17) now give
Fg(0) = (1/7)debeDe, (1.19)

and so (1.11) is seen to imply a constant asymptotic
behavior for w — 0, Finally, (1.12) implies (when
Z¢ = 0) that

TRk, v) > (1/v) (f90Fe + ideve Do) (1.20)

in the Regge limit with |« | large (R’ limit: v>>| &[> 1).

Finally, let us mention some previous mathematical
investigations of null plane restrictions. Klauder,
Leutweyler, and Streit2% have studied quantum field
theory on lightlike slabs, and Neville and Rohrlich21
have studied quantum fields and differential equations
with initial data specified on lightlike planes. The
present work extends portions of their results.
Neville and Rohrlich have calculated the null-plane
restrictions of first-order derivatives of A(x;m); we
extend the calculation to include derivatives of all
orders and provide a natural mechanism for remov-
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ing infinite coefficients which occur in previous cal-
culations. An analysis is given of the lightlike
charges obtained by integrating current densities over
diffuse cutoff null slabs, then removing the cutoff and
shrinking the slabs to planes. When this is done care-
fully, the resulting charge annihilates vacuum states;
however, this alone provides no control over other
matrix elements of the charges. In order to control
other matrix elements, we insert convergence factors
into the sequentially defined charges. These conver-
gence factors are later used to obtain finite sum rules
from bad-good and bad-bad commutator matrix ele-
ments.

In Sec.2 we first define NP charges and discuss some
of their properties. We then discuss NP restrictions
of commutators. We consider progressively more
complicated situations by using DGS representations
with different spectral functions. In particular, the
connection with Regge asymptotic behavior in the
energy is discussed. Methods for giving meaning to
formally divergent NP restrictions are presented. In
Sec. 3, LC operator product expansions for the gene-
ral SU(3) current commutator are given and dis-
cussed. Symmetry and equal-time restrictions are
noted and the A and R’ limits are formally discussed.
Section 4 combines the results of Secs.2 and 3. The
good—good NP restriction is calculated and the res-
trictions from requiring (1.7) and (1. 2) are noted.
We conclude by mentioning how good-bad and bad-
bad commutators can be treated.

2. NULL PLANE RESTRICTIONS AND CHARGES
Our purpose here is to give precise meanings to the
formal expression

Jax 8¢

x_ —x)alx)=A@R_;x,,x,) (2.1)
for the sharp NP density of the field operator a(x),

the formal expression

Jax,ax A 3x,,x) = Q) 2.2)
for the NP charge, and the formal expressions

Se.—y Ak _;x,,%,),BO_;5.,5 )] (2.3)
and

5. —y)[Gkx.), B.)] (2.4)
for the LC commutators of such objects.
Let us first consider the formal charge

Q) = [a%xjlx) bl —x.). 2.5)

We always assume that (0] j(x)| 0) = 0. We shall
attempt to give this meaning as a limit of a sequence
of well-defined expressions. Thus we consider

Qlxl) = nll}‘zrgw[j(x)] [y, n 0625 %)), (2.6)
where v x

h nz(xﬁ ;x) =nqh <n1(x_ — xi)’@’@) 2.7)

h(x—)x+yx¢)=w(x—)v(x+;x4_)’ (2.8)
we $SR), [w=1, vesR, vO)=1 (2.9

Qur treatment is thus analogous to the treatment of
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ordinary charges given, for example, in Ref. 22. We
choose our testing functions to have compact support
in momentum space rather than in position space.
This does not contradict desired locality properties.22

The limit in (2. 6) has not been fully specified; we
note the possibilities

Op = lm[lim (710, )],
Qupp = Jim [lim []k, )], (2.10)
Qe = lim [](k, s).

Thus, if the support ﬁnlﬂz(k) is contained in a box sur-
rounding the origin in momentum space, then:

1 In the limit I the diameter shrinks to 0, and
then the length increases;

I In the limit II the box stretches out along the
k, axis keeping fixed diameter, and then its
diameter shrinks to 0;

I in the limit III stretching and shrinking occur
simultaneously, the parameter 8 indicating the
relative rates.

We first note that if 2 has compact support in momen-
tum space and there is a mass gap in the theory, then
€y ; is defined on the vacuum and annihilates it. The
same is true for @, , if B > 1or,if B = 1,provided

hy 1(k) vanishes for #2 > M2 where M is the minimal
mass in the theory. This is so because under the
above conditions, for appropriately large n; and n,,
the support of ﬁ o, (k) is disjoint from the mass
spectrum and so, “ffom the Kallen-Lehmann repre-
sentation, | @(x_ |0>|f =0.

Finally, if 5(k_,%,) = 0 for k.= 0, then @ ,, @y ,, and
€, s each annihilate the vacuum;however, since h(x)
is not real, they are not generally limits of sequences
of Hermitian operators.

Since the preceding arguments depend only on support
properties of h"ﬂlz’ they remain valid for new charges

obtained by replacing hnln2 with n’;n,fhnlnz—these new
charges will be used to obtain finite results from

“pbad-bad” commutators.

The charges @, , can easily be related to the infinite
momentum limits of ordinary charges. We define

2 e e
so that
14 ¢
<z'> = A <z>
satisfy £’ £ 2’ =nl(t + z). Thus
h, &) = nl';n (A,x),
where
By (o_,x, %) =h_,x,,x /n)
so that
(1@ 6 )l By = Tim (A,0|[f] B AL, (2.12)

One can similarly discuss currents with Lorentz in-
dices and commutators of such currents.
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Also of interest are the semicharges Ct formally ob-
tained by integrating a current density over the null
semiplane x_ constant, (— 1)?x, = 0. Indeed, if these
are defined by sequences [ j] (ki(x)), where hi(x) = 0
unless (— 1)ix, > — 1, |x_|< C, then there exist non-
empty open sets R* which are spacelike with respect
to the support of each 2%, Let P, and @, be elements
of the polynomial algebra associated with Ri—since
they commute with all Ci, one has Ci P,|0)= P, Ci|0)
and (@2, Ci P1]0) = (P;'Q,2, Ci%2). The states P,[0)
are dense in H (by the Reeh—Schlieder theorem); thus,
if Ci|0) is a Cauchy sequence, C? is a densely defined
sesquilinear form (and if C.|0) converge to an ele-
ment of D, the common domain of all P;,then C*is a
densely defined operator).

Unfortunately, the previous simple support arguments
cannot be used to control Ci|0). The use of conver-
gence factors may provide a partial alternative. Let
u € C®(R) satisfy u(x) + u(—x) =1, w{x)= 0, ulx)=1
for x > 1;and let ui(x) = u((— 1):x). Define C! = lim
[4) @),

hi) = fln)ui(e,/n)whx Yo, /n,x /n),

with w, v as before with the added requirement that

w is to have compact support. (The charge C, = C? +
C1l still annihilates the vacuum provided v vanishes
for k£ = 0.) Using the Kallen-Lehmann representation,
one has

Ici 1oyl = [D@e)] (17i(x)]2)
and N -~
i, — ci)loliz = [D)] (I}, — hi|2)

where D(x) is a positive Lorentz-invariant distribu-
tion. For any finite pair 7, s one may pick an inverse
polynomial f{z) such that | &, (k)l]%.,s - 0; since D(k) is
bounded in some norm | I/, . one may always equate
f{r) to an inverse power of n such that Ci |0) is a
Cauchy sequence converging to zero. However, it
seems difficult to obtain a Cauchy sequence which
does not converge to zero.

We now turn our attention to the NP restrictions of
commutators of local fields. We explicitly consider
the commutator

D(x) = [j(x),(0)]

of scalar “currents” j(x). We shall treat (2.13) as a
bilinear form, rather than as an operator, and further
simplify matters by considering only diagonal bounded
momentum matrix elements. Of course, we should
really work with the eight-dimensional distribution
[7c),7(»)], but this can be trivially related to (2. 13)

by translation invariance. Our final notational sim-
plification will be to work with sharp momentum
states. Momentum smearing is trivial and can be
done afterwards if desired.

(2.13)

The above conventions can be conveniently summa-
rized by the DGS representation

D) ==" [“da [Ldb o(a,b)e i =a(;a + b2).
27 7O -1 (2.14)

Our analysis will be based on properties of (2. 14) for
various choices of the spectral function o(a, b). Our
results can be easily extended to other representa-
tions.
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Precisely analogous to (2. 10), we define, for distribu-
tions d(x), the restrictions Dy ,(x_),Dyy ,(¢.),Dg ,(x.)
corresponding to the formal expression (2.4). We
shall proceed in three steps, first discussing A (x;m?),
then e~i**? A(x;m2), and then all of (2. 14) for some
interesting o's.

We begin by noting that {DA(x;m2)]; , and [DAG;72)], ,,
B> 1,where

— %1% g% g%,
D = 5;10020,°0;"

is any differential operator, may be made to vanish
by appropriately restricting the support of # as dis-
cussed above. [Thus when such restrictions are
made, discrete singularities of o(a,b) at b = 0 do not
contribute to the null plane charge obtained from Eq.
(2.14).] At the other extreme we consider

[DA(;m2)]y, = lim [0(x)DA(e;m2)] @ (x,/n,x, /n))

2.15)
where [6(v_)d(x)], is the null plane restriction of
d(x), defined below.

We define the restriction to the null plane x_ = 0 of
the distribution d{x) € S'(R?) taken with respect to
w e SR), fw=1,by

[6¢)a®)],, = lim [rw(ex)d(x)] (2.16)
provided the limit exists in $’(R4). {We do not define
[6(c_)d(x)] if the limit does not exist.} If (2.16) does
exist and is the same for all w, we write it simply as
d(x_)d(x). It is useful to place restrictions on the be-
havior of w at the origin. We therefore define the
space S, of functions w which satisfy

G )

i [fi(x_)d(x)]wle is defined and is independent of
w, € S, ,we write it as [6(x_)d(r)],. We note that the

set of functions w, is quite large and includes the
simple functions

Lk=1.  (2.17)

T=0

[222T()/Wm TQ@I)] y2ie»?, 2= k. (2.18)
We list (in Table I) the results of the computations
(2.15). The derivations and proofs of sequence inde-
pendence are given in Appendix A. Additional combi-

nations may be obtained by using
4 d
dx, dx._

Note that, by using an appropriate testing function
w,, all of the restrictions exist as distributions in
S(R4).

As an application of the results in Table I, and for
use below, we consider a homogeneous distribution
£, ) of degree A, A € R:

= (U +m2) + 92 —m2, (2.19)

gilax) = a*g,x), acR, a=0,
A A

where, of course,
lg(ax)](x)) = a e t)|ulx/a)),

and d is the dimension of space. If d(x) is homo-
geneous of degree A, then

(2.20)
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TABLE L

I. In general
[6( +2) PW, — d,,d, ,d, ) T,
=P, — dz,dxl,dxz)[ﬁ(t + z)' T(x)],

® 1 g k
[6®(@ + Z)-T(x)]w: ﬁlzzlo (_)I(l> @, +d )6+ 2) (d, + a,)iT(],

.

(8t + 2)-ale;m2)], = 3 6(t + 2) e(t) 6(r )

[6(t +2)(d, —d)eAl,m?)], = 3 (2, — d,)*1 6x)
[6(t +2)etg)Ale;m?)], = 5 6(L +2)6(,)

[6(t +2)Wd,—d)eelxg)a;m?)], =0, k=1

III.

(6t + 2)-, + 4,k A2, = €lt —2)le — (@3 —m2)]*5( + 2;3x,)

202!

v.

[6(t + 2)d, + dz)ke(xo)A(x;mz)]w” - [ — @i —mA|*o(t + 2;2,)

26021

V. Additional combinations may be obtained by using
d,—dyd, +d,)= C +m2) + (32 —m2)
[6(t +2)@, +d,)*6()],, =0, b>k

[d)](nwnx Yv(x./nb, x, /n?))

=nAWNB[d(x)|(nw (nx )olr, ,x,)), (2.21)
where
Alx,B) = + 3)B/(1 + B). (2.22)
Thus, if A = — 3, then
Dy, =[0(x)dx)],@). (2.23)
KA~ — 3 and [6(x.)d(x)], is finite, then
Dys =0, @.24)

and, if » » — 3, then D, , can only exist if
[6(x))dk)], = 0.

We next consider d(x) = e??"*A(x;m2) with p_. # 0. In
this case, Dy,, Dy1,, and Dy, are all equal becduse, as
n, = =, the tube representing the support of %, ,,(k)
stretches out at a 45° angle with respect to the energy
axis and punctures every mass hyperboloid. The cal-
culation is straightforward and gives

Dy, =Dipp =Dy =—2/b-. (2. 25)
We are now ready to consider the general representa-
tion (2. 14). We shall only consider spectral functions
o(a, b) which are rapidly decreasing functions of a
uniformly in . We do, however, allow singularities at
b = 0. These spectral functions are of physical inte-
rest since they lead to scaling behavior in the A limit
and can lead to Regge asymptotic behavior in the R
limit.12 For use below, we recall here some results
from the Appendix of Ref. 12,

The Fourier transform [p = (1,0)]

Wik, v) = Ji da [} db o(a,b)(x + 2bv—a)  (2.26)
of (2. 14) will satisfy scaling
VW —> F(p) < © 2.27)

with
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Flp) =% [dao(a,1/2p) (2.28)
and will have Regge behavior

W—wkp®, —1s<asl, (2.29)
with

w(Kk) = 3 fda o(a)[2/(a — k)]l (2.30)
provided

o{a,b) ~ b-Qg(a) for b~ 0. (2.31)

It follows that

-~

D(x) = WxZ;x°p) —> O6(x2)e(x-p)f (xp)
x2->0
(2.32)

with

JO) 2 A= (2.33)
If (2.14) represents a true scalar commutator, then
f(\) must be even. In order to include the affects of
internal indices, however, we shall not so restrict

J).

Since, according to (2.25), we have

S(x.) emivx A(x;m2) = — 3 6(x ) elr,)b(x,) e 2ip-*_
2.34)

we formally obtain from (2. 14)

[ax,8()D(x) = (—i/ap.) [ dadb[o(a,b)/b]

X 8 )o{x ). (2.35)
If o(a, b) is even in b, then (2. 35) vanishes. X it is
odd in b, then, according to (2. 31), (2. 35) is only
finite for ¢ = — 1. For o < —1, we expect the three
D's to be equal and to give

(— i/4p_) [ dadb o(a,b)/b= 3. (2.36)

This is easily seen to be the case. The corresponding
“sum rule” is

[ dvw(k,v)~ =. (2.37)

Let us finally consider the case — 1< «. Then,
according to (2. 31), (2. 36) does not exist and, accord-
ing to (2.29), neither does (2. 37). These difficulties
amount to the sequence dependence of

S ax f) v@a/n).

A way to surmount the difficulty is suggested by the
identity

fax ravin/n) =net fdrv@);

(2.38)

(2.39)

for the good situation o < — 1, this always vanishes
for n — . In the bad situation o > — 1, however, it
diverges for n — © unless the integral vanishes iden-
tically:

fd)\ A v(x) =0,

This is quite consistent with the interpretation of the
limit of (2. 38) as a formal charge, which only re-
quires that v(0) = 1.

(2.40)

It seems natural to use these observations to define
finite NP restrictions in the bad situation. Suppose,
for example, that
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JA)=x2+g(), gl) =019, a>—-1. (2.41)

With v(d) chosen to satisfy (2.40), we have
J,dx. 66 )D@x)~ 6(x.)6(x ) [drgr). (2.42)

The corresponding sum rule will have the form
[avw,v)~ [ax gn) (2.43)

where # is obtained from w by subtracting out the
leading large v behavior (2.29).

3. OPERATOR PRODUCT EXPANSIONS

In this section we discuss the LCOPE's for the SU(3)
currents Ju"(x). These expansions have been shown to
be valid in each order of any renormalizable field
theory, in soluble models, and more generally.15,23
As in previous cases,15 we shall ignore the logarith-
mic factors (log x2) which occur in perturbation
theory.

The methods of Ref. 15 show that the LC expansion
for the commutator

Cablr) = [J2 v/2),d) (— x/2)] (3.1)
has the form
Cow) 572 ?d:w[og*“(x)a“au + 0§ (x) g,,8/0x2
+40§)° (), + i08)° ()9,
+ z'Ofp)c(x)ay — 0§)° ()2,

+ 08 (x)e2B 3

pv Yo
+ O§)5 () + 105 W)]Ak), (3.2)
where
d(:bc — idabc, dabe — fzzbc (3. 3)
and
Alx) = (1/2m) €(x ) 5(x2). (3.4)

We have assumed that SU(3) is only broken by mass
terms so that the leading LC singularities have the
above SU(3) symmetric structure. Og is symmetric
and Oy is antisymmetric under ¢ <> v. The Ox)'s in
(3.2) have the expansions

09 °(x) = ;})(i)"x“l. Lx PP, (0) (3.5)
n= n

in terms of a suitable basis {Pl(fio)cfan} of local field

operators. Here K takes on the values 1,2, 3u, 44,
58, 6uv, and Tuv.

The symmetry property
Cab () = — Cta(— x)
implies that
O (—x) =+ 0P K), K=1,2,4y,58,6u,
and (3.7a)

(3.6)

O}(*)“ (—x) = ¢01({*)° (x), K=3u,Tuv. (3. o)
The adjoint property
Cob(x)* =— C2b(x) (3.8)
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implies that
P ey =+ 08* (), K=1,2,4p,58, 6w (3.9a)
and
OWe ()* =% 08 (x), K = 3u, Tuv. (3. 9b)

Equations (3. 7) and (3. 8) imply that the B, in (3. 5)
are Hermitian. Equations (3. 7) imply that

® -
Pl(occl.---oczm1 :PI((?xl...azﬂz 0, K =1,2 44,58, 6uv
(3.10a)
and
ngfl,_.azm = PQr vy, =0, K =3u,Tuv. (3.10b)
The equal-time commutation relations
Cghelx) 6 x o) = if 2beJg (0) b(x), (3.11a)

C8 () 6(xy) = if ¥ Jg(0) 6(x) + idabe £¢(0)3, 6(x) (3. 11b)

CB ()5 xq) = i 205, JE(0)6(x) + idasee,, A°k(0)5(x)

(3.11c)
imply that
B® o3 PQF=o, BEFe_ 2,
B _ ®e _ Ve _
P =Je, PEX =0, PYe=A5 (3.12)

The remaining low-indexed terms in (3.2) contribute
to the time derivative commutator according to

Jatx 5(co)[Je (x), Jp (0)] = 2ddade[— E$)(0)
+ Fig.*k(O) +1 G§;>C(0)] 3.13)

+ij terms + ({ <> j) antisymmetric terms, where we
have used notation to be introduced below.

Especially interesting is the good-good commutator,
which we write as

[Ja(x),J2(0)] - §dgbv [6@e(x)d_a_

+ 2iFWe(x)a_ + G@e(x)] Alx), (3.14)
where o
[6) — \n a, pide
8®e(x) nZ=>0 @x4, . .« nEalman(O),
]
e _ Y a, e
5,7 () _n=0(z) X%, x "Fl‘“xl-'-“n 0},
() _ < . a« a, ~#c
6. 0%) ~r§o @Vx™. . 2 Gon o (0 (3.15)

with the E's, F's, and G's Hermitian local field opera-
tors. Let us directly compute from (3. 14) the beha-
vior of the single-particle rest matrix elements. We
define

(plEWe(x)| p)=eWe(x p) + .-,
(P F@ex)|p)=f@ee-p) + <+,
(PIGYe@) I p=gWelx-p+---,

(3.16)

where e, f, and g are scalar functions and the omitted
terms do not contribute to the leading asymptotic be-
haviors. By the methods of Ref. 4, we find from (3. 14)
that (1. 14) is valid with

Fgb(w) = (i/4m) [dx eirwhad(n), (3.17)
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where
hab () = 25 d 2o [g®e(n) — 2if@en) + e®er(y)]
F3

=debc he(n) + doche(rn), (3.18)
so that
Fg0(0) = (— 1/47)dab [dn he(n). (3.19)
Using (3.12), we find further that
Tk, v) —> (— i/4v)daoe [dxn@e () + (fabe/v)
x[Fe— 5 [are)g8¥].  (3.20)
Equations (3.17) and (3. 18) tell us that
Jdw Eg¥w) = (/2) h®(0) = — § qave
x [¢9(0) — 2if©o(0) + e@en(0)].  (3.21)

By virtue (3.13), this is just the Callan-Gross result.
We have derived it without taking an infinite momen-
tum limit because in (3. 16) there occur no &y terms
sinceg__ = 0.

This concludes our discussion of the LCOPE's for the
SU(3) currents. In Sec.4 we shall consider the LC
restriction of (3.14) and briefly consider some of the
other components of (3.2).

4. NULL PLANE CURRENT COMMUTATORS

In this section we combine some of the results of
Secs.2 and 3 in order to compute the null plane res-
trictions of some current commutators. We use the
formal notations of Secs. 1 and 3 rather than the cum-
bersome, although precise, notations of Sec.2. We
will, of course, always have in mind the precise defi-
nitions of Sec. 2.

We consider first the expression (3.14) for the L.C
behavior of the good-good current commutator.
Using Table I, we find

60¢_)[J%6x), L2(0)) = 3 27 d2e[269(x)a_5(x)+ 4ige (x)
X o)+ GWelv)olx ) elw,)o(x,)]. (4.1)

We note that this result is sequence independent.

We next want to integrate (4.1) over x,. The § and &
terms are clearly integrable and the integrability of
the § term depends on the large-x, behavior of
G__(x,,0,0). Assuming this is integrable, we obtain

3 [dx, 8()[J2 () I (0)] = if abede (0) 5(x_,%,)
+ 5[0 fdx, ex,) S (x) 0(x_,x,). (4.2)

Thus, as in Ref. 19, we see that the LC commutation
relation (1.7) or, equivalently, the sum rule (1. 6) need
not be satisfied in general even though the ET commu-
tation relations (1. 5) are satisfied. The condition for
the validity of (1.6) and (1.7) is

Jdx,e,) §9¢(x,,0,0,) = 0. (4.3)
Let us now consider the other null plane restriction
(1.12). In order to avoid undefined expressions like
6(0), we shall make use of a different form of (3. 14).
We can write
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(260}, T2 (0)] > 2 doefgete () )

+2_[5We)AW)] + 2.8 [ @A)}  (4.4)

where X, 9,and J are uniquely related to &, §,and §G.
For example,
Jewe = 9_9_8We _ 249 _FWe + ge, (4.5)

We use the form (4.4) to uniquely define the “nonderi-
vative part” [J2(x), J¢(0)], of the commutator so that

[J2(x), J8(0)], e Z} deec 3ol (x)A (x). (4.6)
Using (4.6) and Table I, we formally obtain
3 fdx, 50c]) elw NI (x), J2(0)]
= 6(r.) blx )idet [dx, 3e¥e(x,,0,0). (4.7)

This result is correct provided H® (x,, 0, 0) is integ-
rable. Equation (1. 12), interpreted in this way, thus
requires the validity of the identity

Jax, 50 (c,,0,0,) = — (M1P_,5°(0)}.  (4.8)
Taking one-particle matrix elements of (4.7) and
(4. 8), using (3.16) and (3. 19), we obtain the desired
result (1.19). The same result (1. 19) was obtained
formally in Ref. 19, but there, because all x, integrals
were assumed to be rapidly convergent, only the g()
term in (3. 18) was kept in (3.19) and only the G term
in (4.5) was kept in (4.7). Here we allow for the pos-
sibility that, for example, f(A) ~ €(x) so that
Jarsn) = 0.

So far we have only considered the good—good com-
mutator (3.14). Working with the other components
of (3.1) leads to two additional complications. The
first is that the formal expression 6(x_ )Cﬁ,’i (x) is not
well defined. This matter was resolved in Sec. 2,
where it was shown that, by using suitable sequences
w,, each term in (3.2) could be restricted to the null
plane x_ = 0. The second implication is that the
large x, behaviors are not expected to be good. This
follows from the result (2. 34) and the fact that the
Regge behavior for these components has o > — 1.
An attack on this problem was also made in Sec. 2.
There is was shown that with a suitable testing func-
tion v (1), the contributions of the bad large-x, pieces
could be made to vanish so that a finite result is ob-
tained. Possible forms for this result could thus be
postulated and, via the corresponding finite sum rule,
compared with experiment.

Note in manuscvipt: We have recently learned that
C.H.Woo has derived related results about the exis-
tence and properties of NP charges.

APPENDIX: NULL PLANE RESTRICTIONS OF
CAUSAL SOLUTIONS OF THE KLEIN-GORDON
EQUATION

We define the restriction to the null plane ¢ + z = 0
of the distribution T'(x) € §'(R) taken with respect
to the function w € S$(R), fdy w(y) =1, wly)=wly)
by

[0t + 2) T(x)],, = lim [mw(n(t + 2) T@)]; (A1)
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this definition gives precise meaning to the formal
expression 6(f + z) T(x). It is useful to place res-
trictions on the behavior of w at the origin; thus w,
will denote a functlon w, € 8(R), w,(y) =w, (—y),

fdy w,(y) =1, [d, mw,(v)] | 40 = 0,m < k. In the
present section (the results of which are summarized
in Table I) we calculate the null plane restrictions of
the distributions A (x;m) and €(x,) A(r;m) and deriva-
tives of these distributions.

1. O(xy +x3)0(x2) and 8(x, + x5)€(x
Derivatives

Recalling the definition of 6(x2) and €{x) 6(x2)

0)5(952)’ and

6(x2) = (1/2[t])o(lt] — 7), elxy) 8(x2) = o(It|—7)/2t
we have, for u € §(R4), ulx) = u(t,r, cost, ¢), (42)
[pw(n(t + 2)) 6(x2)] ()
=3 fdtf_:lld cos@ |t|@ (¢,1¢], cosd)
X nw(n(|t] cosd + 1))
=1 f_:dt f0°°dy o(2n|tl—y)u
x (¢, 1t], eltl(y/nlt|— Dw(y), (A3)
where
u(t,|t|, cosg) = 02"d¢> u(t, 1|, cose, ¢). (A4)

Now the integrands u(¢, [¢],+ (1 — y/nlt[)w(y) are
dominated by the integrable functlons lw(xy) |

x sup, | u(t,| ¢ 1,2)], so the Lebesque convergence
theorem may be used to evaluate the limit

lim [nw(n(t + 2))602)|(w) = & [ dt u(t,|t], e(~1).
(A5)

Since #{t, [t],— €(t)) = 2muix)|, =y 57520 WE have
[o(t + 2)5(2)],

and similarly

[6( + 2) e(xg) 6(x2)],,

= (m/2)8(t + 2)6(xy,%5) (A6)

= (w/2)e(t —z)d(t +2)8(q,x5).
(AT)

Since w({x, + x 5) is independent of the variables

(xo — x3),%,,%,,0ne may replace u by its appropriate

derivative to obtain

[6( + 2)(d, — dz)aldzfdjzt')(xz)]w

= (rr/2)6a1_0d:11d§:5(t +2)o(x;,x,) (A8)
and (a; = 1)
[6¢ +2)d,— dz)aldzzd;?;e(xo) 6(x2)]
=7, —d)"ag d2o(). (A9)

In order to calculate §(xy + x3)(d, + d,)"6(x2?), it is
convenient to first guess the answer which may be
done as follows. We recall [or verify directly from
(A2)] that 5(x2) and e(x,) 6 (x2) satisfy the Klein-
Gordon equations

O6(x2) =25k),
O efxy)6(x2) = 0. (A10)

Thus, if w, € $(R) vanishes at the origin together with
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its first (¢ — 1) derivatives and #(x) is such that
u=(d,—d)* h with k € $(R%),

h’(x) = h(x+) .L)
1 fO """ fOx_k—ldx—ku(xwx}-eyxl)’ (All)
then (A10) implies
[6(2)](d, + d)kuw(t + z)) = [8(x2)]
x(d, + d)ed, — d)rhw) = [6(2)]wdZh), (A12)
and
[0 +2) (@, + d)Fo62)],, ()
~ fax <( ")> %l (AL3
k2 p | %0

If we conjecture that these relations hold in general,
we have

[0t + 2)-@, + d)*o62)],,,
Cle — oy

sy Slx )o@ +2z) (Al4)
and similarly
[0t + 2)@d, + db)eleg) 662,
melt—2) [((z —)e2)kb(x,)6( + 2)]. (Al5)

= 9k+1p)
It remains to verify (A14) and (A15) explicitly. This
may be done by integrating the analogs of (A3) by
parts, a fairly tedious task which we now carry out
for the case 2 = 1.
2. Verification of (A14) and (A15) for 2 =1

In order to verify the preceding result, we begin by
evaluating L, () :nlilolg[G(it) 6(2)][@, + d nw,

(n{t + 2))]u(x). One has

[6( %) 6(x2)] [2n2w] (n(t + 2))ulx)]

= [T ate@t) 2" dy et)nwi ()
x @t It], e®)(y/nlt]—1)).

Integrating this by parts (recalling that w; vanishes
at the origin), one obtains

I“(w,u) =

(A16)

Ini = Inlt + Inzt (A17)
where
I, = f_: dt[+ 6(x Hnw,@nlt|)u(, |t |, @)

-+ 3u(0,0,1) = & (n/2)u(0)
and

12, =— [Zdto( 1) [dy wiy)ut, [t],e0(y/nlt] - 1)
—»+3 [ate@Enul,lt],— et)

with
Z(t,r, cosg) =71 u(t,r, cos)
d cosd
=71 d 0 "d¢ ult,r sind coso,
d cosf

x ¥ sinf siné,r cosh)

= foz"dtp(— cot@(u’1 cosp + u , sing) +u,)
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= [Z"d¢[(— 7 coso)(sin2¢ u

+ cos2¢ #,5,—2 sing cos¢ u,5 + U 3]

and so

alt, 1t],—e(t) = 27{(3‘2_;_ af) u:'

z:—t,xJ_zo )
Thus we have
L=+ —u0)—n [dt ()
z
X [(dz —5 32l>u} st 0" (A18)
Now
[8(t + 2):d, +d,)0(x 1) 62)],, (u)
=—L,W)— [0+ 2)0(xt)6(2)] ()
— (m/2) [at o« t)(z02u), (A19)

which is the result given before. It should be empha-
sized that the vanishing of w, at the origin is critical
for the validity of (A14), although this is not evident
in the heuristic derivation.

3.

6@ +2)0(x2), 8(¢t + z):Alx;m2),and
6(t + 2)elxy) Ale;m2)

Expressions of the form 6(f + 2)0(x2) f (x2) with f
everywhere locally integrable may be seen to vanish
as follows. One has

[9(x2)f(xz)] (nw(n(t + 2))u(x))

=3 oatf " a
x (¢,7, cose)nw(n (t +7 cos8))

2 _ Y _ 1

=3 [atar dy<|t!> F#2 —r2)w(y)u <t,r,m, T)

x0(t|=r)o(y —n(t —7))o(nlt +7) — y).
(A20)

>f1d cosf f(t2 — v2)u

R. AAL BRANDT AND P. OTTERSON

Since the integrand of (A20) is dominated by the integ-
rable function obtained by replacing u(¢,r,y /nr — t/7)
by sup, |u(t,7,y)| and setting n = 0 elsewhere, and
since the integrand approaches zero almost every-
where, the Lebesgue convergence theorem implies
that the limit vanishes.

Since 274 (x;m) differs from €(x,) 5(x2) by a locally
integrable function, we obtain

[6(t + 2)Ak;m)], =5 6(,)6( + 2),
[6(t + 2)ewo)Ale,m2)], = 5 €(t)6(t + 2)5(x,).
(A21)
(@m)lelxy) Al m) and (27) 1 A(x;m) satisfy the Klein-
Gordon equations obtained by replacing 92 with
(02 — m2) in the preceding calculation; the reasoning

used in passing from (A10) to (A14) may be general-
ized by making the same substitutions.

4, 5Bt + 2)T)

Distributions of the form 6(®( + z)-T(x) occur when
one carries out the null-plane analog of the Bjorken
expansion. Such distributions are incorporated in the
foregoing analysis by means of the relation

k
EroeNTe) = 2 (F) ot wwie 2,01 a22)

=0
valid for every c= function w, distribution T, and first-
order derivative 9. Thus we define

(6Bt + 2) T)], = lim [n#1w® (n(t + 2)) T(x)]

and obtain T
k
[6®(¢ +2) T, =~ 3 <’;> d, +d )5t + 2)

T ok =0
(—d;—d,)T(x)], (A23)

whenever each term in the sum is well defined.
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The Schrédinger equation is obtained by Feynman's path integration method of quantization for a general dyna-

mical system. The meaning of the results is discussed.

1. INTRODUCTION

We present a derivation of the “Schrodinger equation”
for a general dynamical system using Feynman's
path integrall method of quantization. The result
differs from the “usual Schriodinger equation” in that
there is an additional term proportional to the total
curvature R of the coordinate space defined with a
geometry given by the kinetic energy. This result
had been given before by DeWitt.2 In a curved space
or in cases of constraints where R # numerical con-
stant, the presence of this additional term would
change the energy spectrum of the whole system. In
Sec.IIl we discuss the meaning of this additional
term.

II. DERIVATION OF THE SCHRODINGER EQUATION

We will give a detailed derivation of the Schridinger
equation for a general mechanical system by using
the path-integral method of Feynman. For a given
mechanical system described by a set of coordinates
q (q1,q2,--- q¥),let the Lagrangian be

L), q) = 38, (at) a* 97, (1)

Following Ref. 1, we can generalize Egs. (1)-(18) to
the above system, that is,

Yt + €),t + €) = (1/A) [ exp[(i/H)S(a(t + €), q(t))]
X Y(q(t), t)Vglqt)da®), (2)

where Y(g(t + €),t + €) and §(q(¢), !) are, respectively,
wavefunctions at time £ + € and ¢, S(g(¢ + €),q(?)) is
the classical action, that is,

Lig(t),

S@(t + €),q(t)) = minimum of J," a)ar (3)

with the boundary conditions

Q(t')lt':t:q<t); q(t')|t':t+e:q(t+€)' 4)
A is a normalization factor to be determined later
and g is the determinant of (g,]) Taking the limit of
Eq. (2) when € — 0, we can derive the Schridinger
equation. Now as € — 0,the factor exp|[(¢/7%)S(q(f + €),
q(#))] oscillates very rapidly. Only the vicinity of the
stationary point of S(q(f + €), ¢(¢)) contributes to the
integral in Eq. (2). The stationary point is

q@t) = q(t + €). (5)
As we shall see the region which contributes to the
integral in Eq. (2) is |Aql=]q(t) — q@t + €)| S el/2,
Thus we can expand S(g(t + €), q(t)) as a power series
of Aq. This is done in Appendix A and gives

S(gt + €),q@) = g”(q(t + €))
[ Aqiagl — 3 : % Agiagmagr
1

tz

i
mn

m 8
3OIB€ AgTAgrAG* Aq
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1/29 \ ¢ A AL
+ §<a_ql + ?az o >AqJAq AgqrAagl + -
We also need the following expansions:
g
Vg@(®) = Vglglt + €) — a¢? aqg
2
+ tagisg 2 .@_ + (7
dqtaql
i oY
+iagian 2 L ()
dqiogqi
In these equations
Ag =q(t+¢€)—q@) (9)
and mn$ is the Christoffel symbol,
i X
ot =& € [mn, ], (10)
1 /0 0g 98,
[mn,k]:—< gmk+ /Lk_ mz> (11)
2 ogr  og™ ag*

and (g%*) is the inverse matrix of (gzk) Keeping the
zero-order term (l/Ze)g, AgiAgi in the exponential
and expanding higher- order terms into power series,
we get from Eq. (2)

(gt + €}t +€) =3 fexp<2ﬁ€ 80 Aqf)

% )
{1 2h’e &ii Ymn AgIAqTAg
i 7
+ .. Agm n o B
8ﬁeg” mn\ JafB e A
) d i ) o .
Gﬁe gij <a_ql wmn al n >AqJAquq"Aql
_gingt ’ N AgiAqtAgmAgr AGO A B+..]
872€2 lmn) lag PATAImATAT™AY
* <'g(q(t T €)) — Agt an + 3 agiags 2208 >
0q 0qiaqi
x (wq(t +o,)—ag X
oqt
+tagag 2t aeqy - dae®). (2)
aqoq’
The following are two useful identities:
JIZ o [exp (2 — gUAqM> d(aq) = (inhe)¥/2 g~ 1/)2
13

S fexp(z,7 2,09 Aq>

X AgUIAGE. .. Ag¥emd(Ag)
= (inhe)V/2g™V/? (ihe)" {gM1%2g*3%4 . .. g%2m-1m
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+ terms with other possible permutations of

o PR P (14)

There are altogether (2m —1)(2m—3) - --5-3-1terms,.
Using the two identities, we can easily find out the co-
efficients of Y(q(t + €),t), a0y /aq™, 92y /3q™dqr. The
calculations are in Appendix B.

Here we just write down the results, Equation (12)
becomes

xb(q(t+e),t)+ea_‘/;+...

d
UL 5!w(q(t +e), 1)

h —_— = ——— \/ mn TV _ [
where
R :ginij’ (16)
By =Rije (17)
and
RL _ 8 | _ @8 {1y ’asz(’_aslg
9E T 5qr (i) ogi lik) * i ks ‘Z.k% it (18)

Compare the coefficient up to order € in Eq. (15). We
get

A = (infie)N/2 (19}
and
ey K210 /4~ ay\ , H2R
i Yo BT O (g gme ——>+—¢. (20)
ot 2 Vg aqm< oq* 6

Equation (20) is the “Schrodinger equation” using
Feynman's path integration formulation of quantum
mechanics.

ol. DISCUSSION

(a) Equation (20) above is different from the “usual
Schridinger equation” in which the term 72R/6 is ab-
sent. Notice that both equations are convariant under
any coordinate transformation gt--- ¢¥ — @1 .- @V,

(b) In case the curvature R vanishes, one does not
have to discuss which of the two equations is to be
preferred, since they are the same. Such is the case
when the kinetic energy is that of a collection of non-
relativistic particles in Euclidean space where N = (3
times the number of particles).

(¢) IfR = 0,it may seem at first sight that canonical
quantization rules will yield the “usual Schrodinger
equation.” That is incorrect! In fact, only in the case
g;; = constants are the canonical quantization rules

[P;,q7) = — 6,7

unambiguous and independent of coordinate transfor-
mations (if they maintain g;; = const). R # 0,
“canonical quantization rules” are ambiguous.

(d) The limit # — 0 of both equations give? the same
results as classical mechanics, since the term

— K2R/6 is an equivalent potential energy and app-
roaches 0 as 7 approaches 0.

() If R # 0,one can always embed the coordinate
space g1 --- ¢V as a curved subspace in a Euclidean
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space S of larger dimension. Does canonical quanti-
zation in the larger space S lead to a unique Schro-
dinger equation in the subspace ? The answer to this
question is no. To analyze this question, one would
have to investigate first the constraint to be applied
to the system in S so as to restrict the motion to the
subspace. This constraint is to confine motion to a
thin layer of “thickness” A(gl--.¢%) around the sub-
space and then to approach the limit A — 0. In classi-
cal mechanics any nondissipative constraint would
yield the same result in the limit A — 0, The limit-
ing trajectories would satisfy the Lagrangian equa-
tions for the ¢'s, and one need not concern oneself
with the larger space S. In particular the thickness
A can depend on g1 ---¢V, E.g.,one could have

A=Agt---qV)e + O(e?), 21)

and take the limit € — 0.

In quantum mechanics, however, the constraint pro-
duces a zero point energy. The limit for the Schro-
dinger equation would then depend on precisely how
the limit A — 0 is taken. If one takes (21), and the
fact that A # const, the Schrddinger equation would
acquire an infinite term a(A€) 2 which varies wildly
over the ¢'s. Consequently, the Schriodinger equation
approaches no definite limit. If, on the other hand,
one takes A = const, then everything depends on the
higher order terms in O(€2) in (21).

(f) To summarize,for a case R # 0, canonical quan-
tization does not produce a unique Schrddinger equa-
tion, and embedding the system in a higher-dimen-
sional Euclidean space would not help to produce a
unique Schrodinger equation. The correspondence
limit also does not uniquely determine a Schrodinger
equation. Feynman's path integration formulation of
quantization, however, does produce a unique equation,
which is Eq. (20) above. The “usual Schridinger
equation” appears to be foundationless.
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APPENDIX A

In this appendix, we want to expand S(g (¢ + €),¢(t)) as
a power series of Aq. The equations of motion are

. og. . 0 og ., .\ - -
gm'qj:_l<gm] + gm-oc_ gdf)qaqj (Al)
J 2 \age aqi aqm
or A
B oy B

Gk =— 1} p 47a" (A2)
Via Eq. (A2) it is not very difficult to prove

d 1 25y

7 28,4°¢) = 0. (A3)
That is,
Sttt + ©),q@) = [\ Lat

=[28,@ + )it + )it + )]e.  (Ad)

Now if we know g¢(f + €) as a series of Ag, we know
S(g(t + €),q()). In order to find out gi(t + €), we need
‘q*. From Eq. (A2), we find
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3 \k k E)
PR -2 qoq6qr. (A5)
4 (8617 ?aﬁ gmﬁ
Now for small € and [Ag|S €12, we can write
qi(t) = qi(t + €) — €qi{t + €) + (e2/21)qt (¢ + €)
— (€3/31)qi(t +€)+ --- (AB)
or
G0 =gt + ) —eqit+ -1 Ljage
27 Jap
3 ; ; e e
Sl
3! \ogr lap mpBy |ay
(AT)
From Eq. (A7) we get
it + ) =2L_ 132 ngmagn
€ 2¢ (mn
1/20 i i o
+ AgTmAGrA l+..._
66<aql mn alz mn%) E

(A8)
Substituting Eq. (A8) into Eq. (A4), we get

1 : il .
S(g(t + €),q@)) = 2—€gi]. l:quAqJ —_ gm”§ AgiAg™Aq

1y (Ys
43mn§ af

VAN
3 \agt |mn

This is Eq. (6).

AgmMAGrAqrAgB

LJilfe

lal) lmn

(A9)

APPENDIX B

In this appendix, we calculate the coefficients of ¢,
oy /0q, 0%y /3qdq by using Egs. (12)-(14).

02y 1
(a) s og f (__g“quAqJ>Aquqm/gd(Aq)
- ﬁlﬁﬂ;)ﬁ (iF€) 512_ (B1)
ay 1 1 . > i
1= Jexp(—— g, 8qia¢) Vg [——
(b) g A J xp(zh,€ &;A9'Aq7) Vg (2%)
X & ; iﬁ AgrAqingebqPa(Ag)
[
1 v i N dg .
+ = Jexp[— g,.Aqi0q7) =2 Agiagr
Af p<2ﬁ6 809 q) ags N1
(infie )N/ 2 L1 3 i .
=7 _ (—ihe) . njgrab
—— Cie) o aﬁ% g1
4 gragss + gogi) + (TROTE (i’ie)g"ag g
A e
= M — ifie < [:7] n ( " B >
= ¢ Yzg& aﬁ‘ + gno af
(inhe)V/2 352
+ ———— (iie)gr>
" (ifie)g B
il YW/ 2 . N
= (R i)y gee )
; N2 .
= (Z_WEE_)_. (ie) l _1_ _Ei;n_ (Jggmn)_ (B2)

2 Vg ag
In obtaining Eq. (B2) we use the identities

)Aquq’"Aq"Aql+---:,.

[
B
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1 aVg _ _ ;Bs (B3)
Vg agi i
and
agm _ s 98ap
aqk magn a " (B4)
Equation (B4) can be derived from
8 ,
5‘? (gmrxgna) = aqk (65') = 0. (B5)
¢y -
1) L fexp (L &i; AMqJ)@d(Aq)
A 2ne ~ Y
e/ 2
= @EENZ )
A

1 i
) Zf‘*@(gﬁg
4
x [t
[2%6 iy
1(3 p ;0‘
2 \ImB\ Ina
¢ J
+ [ g
(8ﬁ€ £y af
x <_a_ 3 d s +
097 laf
1
T ghi2e2

g;ygjé

i Ainqf') x Vg

L 3’” AgeAgBAGYAGS
apy {dm

a \B mA g
+an3mﬁ§>“" A

s

Js_,__l__
v8) 67ie
i

ma% )
1
ap

X AGeAGBAQY AqdAg™Ag”

AgaAgBAQY Agd

o
J'

a{aq)

(inFie)N/2

- ——(z‘hax;—%gi, !

af
p 2

+§<3n€6% :a Tq"?mﬁo
(5o e * 550
ol e

o

I'}xthesf equations, (@4, @y« - @, ,,) stands for (g
g 2m172m) + terms with other possible permutation

m

A om

i

ap

TEPNS 3;6 (agyomn)]. (B7)

8

g |

of (@jay--- ay,,).
The term
égiygjé 301/3 (afydmn)
S ZB§ I Ligms (apyn) + g7 Byom)
+ god (mnyB) + g (mnay) + gvé(mnap)]
=g.“‘§ 3237}1 |
+ e, } ol el tpro) + agiygm’ﬁ (aBy?)
sgz] ; 3 $ (aByd).
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Thus Eq. (B7) becomes + l( B {\al L% B £> (mn):'
. _ 2 \{mpB\ |nao ogr |(mf
(B7) = (RO (iﬁ€)x|:<—_gzy e - (__i”’“)N”(— lhe)(i my_ 3 gm%
B} {om| A 6 /\og™ lap) oq=|pm
9 |1 1 i {\m mi\n{ \m|{n B B8
s&i0 3473 Bg 12 &% %m %;By>x (@fre) ¥ mn% ap)  lma gnﬁ >g ' .
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An “H-Theorem’’ for Multiplicative Stochastic Processes
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In a recent paper the author showed how multiplicative stochastic processes lead to a potentially comprehensive
theory for nonequilibrium phenomena. In this paper an“ H theorem” is proved from results obtained using

multiplicative stochastic processes.

INTRODUCTION

In another paper,! the theory of multiplicative stoch-
astic processes was explained, and it was shown how
such a mathematical theory leads to a formalism for
nonequilibrium thermodynamics: In this paper the
thermodynamical “H function” will be introduced, and
a proof of an “H theorem” will be presented.

RECAPITULATION

The Schrodinger equation for nonrelativistic quantum
mechanics may be written in matrix form as

1200 =T Myq Cnl), (1)

where M, = M} ,which is the condition of Hermit-
icity, and 25, C. (£)C,(¢) = 1, which is the condition of
conservation of total probability. The Hermiticity of
M, in (1) is necessary and sufficient for the con-
servation of total probability. Suppose that a fluctua-
ting contribution to the Hamiltonian is considered.

Then (1) becomes
120, (1) = DoMqrCorlt) + I Moo (0C (0, ()

where M, (t) = M}, (1), and the following properties

hold for the averaged moments of M, (£)1:

(Mo (1)) = 0, (3)
(M, () Mg ,(5)) = 2Q, s 0(f — ), (4)
<1‘7I,11y1(t1)' : '1‘71,12”_1,,2"‘1(1/‘2,,_1» =0 forn=1,2,...,
(5)
(M, (t) -1, (2,))
.
- z'zln! pe?” LR PR
x (tp(2j—1))Mpp(2j)up(2 o2
= 2:,” pesa, el 2Qu, 2 5-1) Yples- Hp(aVpCa
X 8(ty25) — L@ ) (6)
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where S, is the symmetric group of order (2n)! The
properties given by (3)—(6) are those appropriate for
a purely random, Gaussian, stochastic matrix.

A density matrix representation for the Schrédinger
equation is obtained in terms of the density matrix
Pup, Which is defined by

Pas(t) = CLHICH(1). (7)
I Lgoe and L g.g(¢) are defined by

Losors = OuqMper — B0 M,

oo’ o

= - ~ . 8

L oporgr(t) = 6,0Mpg(t) — Oggr Mol (2), ®)
then Eq. (2) may be used to directly verify

. d ~

Zd_tpaa(t) :g; %[Laﬂa'ﬂ' + Logorpr (D] grpe (D). (9)

This is the density matrix equation. By averaging
over the stochastic contribution by means of pro-
perties (3)—(6), an equation for the averaged density
matrix, { p,5(¢)), may be obtained, although only after
significant computationl:

d )
E(paﬁ(t» = - l? Z@Laﬁa131<palﬂr(t)>
- Z: BERaBalﬂl<palBr(t)> . (10)
al '
The matrix R g .5, Which appears in (10) is defined
byl
Ryparsr = aowc'%) @poes T+ 565'29) Qoaare
(11)

- QBB'cx’cx - Qa’cxﬁﬁ"

It is also provable that for arbitrary complex mat-
rices X 4,

20232220 XopRogarg X g = 0 (12)
a B o B

and
2 Ropy = 0. (13)

Conditions (12) and (13) lead to irreversible behavior
in (10) with the equilibrium state being proportional
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to the identity matrix.! In the following these pro-
perties will be proved within the context of the “H
theorem.”

PROOF OF THE ‘“H THEOREM”

By virtue of its definition, p_4(¢), and also {p_,(¢)), is
a positive definite Hermitian matrix, This implies
that there exists a unitary matrix U_;,(¢), such that

l{m.(t)(Pa:B:(l‘» Ug:§(8) = De(2), (14)
where D, 4(¢) is diagonal
D,g(t) = D(£)8 4 (15)

with positive diagonal elements D, (). Note that at
each instant of time, there will correspond a particu-
lar, time-dependent unitary matrix U ,(?).

The logarithm of the averaged density matrix is de-
fined by

[10g ({p(EN] o5 Z‘E 2L(2) 10g (D (£))8 g Ugr )

= % Uz} 108 (De(t))Ugg(t).  (16)

This procedure is required in order that the log-
arithm of a density matrix is well defined.
The H function is given in terms of the averaged
density matrix by2:3
H(t) = Tr[{p(t)) log ({p(t)))]
= ZZ;)ZQ); UL Do(t)Uqg Uds 10g (D (1)) Ugyy,
o ’

= Z;De(t) log (Dy(1)), (17)

where the last two equalities follow from (14)—(16).

Consider the time derivative of H(¢):

1 dD(¢
9() log (De(t))+ZDe\t)D—(t; det()

(18)

The second sum in (18) is simply 25, (d/df)Dy(t)
which vanishes by virtue of conservation of total pro-
bability. Therefore, the time change of H({) becomes

E D g, 00, (19)

In order to compute this remaining sum it is neces-
sary to compute dD, (¢ )/dt.

Using (14) gives
d
P § 23U
. BE[(dt Uea t)><paﬂ(t)> UBG
el (34 Pesle) U0

a0 ostt (2053 (t))] (20)

Consider the first and third terms of the last multiple
sum. Again using (14) gives

t)(paa(t)) Ugel(t)

FOR MULTIPLICATIVE STOCHASTIC PROCESSES

1727

| (& Veult) pust0d U
* UpeltXoo) (5 3300)
- 222 [(020) U300 (00, 0033
Uea<t)Uaa(t>Dp<t>UpB(t) (3 Uw(t))]
= 2 (44 Voult) U2H D0
+ %}De(t)UeB( ) <gt Usd (t)>

- De(t)aé) [((%Uea(t)> 1) + Upolt) ( 2 U&},(t))(]jl;

However, because 2, U, (NUZ}(f) = 1 since U,y(?) is

unitary for each time ¢, then it follows that

thUea HUZH1)

—E[(dt M(t)) ot) + Ugo(t) (dt “e(t)ﬂ (22)

Therefore, only the middle term in the last multiple
sum of (20) yields a possibly nonzero result. There-
fore, (20) becomes

T = DDV 0 (g“,—@aﬁ(r») Us()
. 2222, Usul B

o B o B

X {parpe () Upd (), (23)

iLyporsr — Ropars)

where the second equality follows from (10).

Consider the term in (23) which contains L.g 4.
Using (14) and (15) gives

= 1023221 Ugol!) Laparsr{ Pursr (D) Vs l)
- Z??%}%? Ugod )L opcrpr Unild)
X D (1)U, 5 (Uz3(0)
ZZE%%;E Up o YU (1) Lg org
X U (U, g(1)D(0). (24)
By returning to (8) it is readily seen that
EZEE U VU3 (1) Ly g Ugh (1)U, ., (2)
= %“,BEQZ)Z Ug A)U(E)(0 oM .
— O MUz (), 5, (1)
= 69#<22U5 (DM g5.Up. (1)
-z UeamMJa.U-l(t))
=0 (25)

The last equality follows directly from the Hermiti-

city of M, and the unitarity of U_g(¢) which lead to

DL U ()M 55 Uggr(8) = DI Vool ) My UdD)- - (26)
1 o (X'
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Note that the 6, in (25) has been used to replace p
by 8 in (26). Returning to (23), it has been proved
that

DD = = DED T Vool g P (D U0 (27)

Using (14) and (15) converts (27) into
:iit ) = 22222 erc(t)Rchx'B' o L(t)

a B o

x D (1)U, B,(t)Ug 1)
= —E(EZEZ (t)UB (t)chB(x’B’
I o B o B

U;%l(twps,m)b,,(n
= —-%}Wgu(t)l)y(t), (28)
where W, (¢) is defined by
Wy, () = EZ)ZE Up {OVUSHO R g 1 Uk (DU, ().
Using (28) in (19) gives %)
Ly =~ ST Mo, (0D, (6) 108, (D). (30)

From (13),(29), and the unitarity of U_g(f), it follows
that

2 W,qt) = 0. (31)
u
This may be expressed by
W olt) = — E W (32)

#‘9
Combining (30) with (32) results in

— 25 [Wo, (1D (1) — W,o()Dg(2)] Tog (D(2)).
o (33)
By interchanging y and 9, {33) also gives
—?2[%9@)139(:) — Wo {1)D,(1)] 1og (D, (1))
#H
= ‘;&E{Wep(t)Dy(t) W,o(£)Dg(8)] 10g (D,(£)). (34)
"

Combining (33) and (34) gives

d
E?H(f) =

d
E-ZH(t) =

Dt
O =~ T [Wo, (O0,0) = W,al0,(0)] 1oge(~,;§%).

(35)

Before consideration of (35) may be completed it is
necessary to prove two additional properties of
We, (8).

The two properties of
W (8) = We(t) (36)

and
W:,p(t) =0 for every

W, (t) to be proved below are

6= . 37
The proof of (36) starts with (29) and uses (11):
Wool) = DD LT Upnl DU5H Reg e Uk (1)

= E?EZ Ugo(OWUsd(t) Ryrop o Usi (YU, A2),  (38)

where the last equality follows upon the index ex-
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changes a <« B’ and 8 <« o', From (11) it follows

that
Rgigpa = ‘5135'%) Quooa + ﬁaa'%) Q@op0
— Qurapsr — Qagrars-  (39)
From (4) it follows that
Qaﬂyy = quaB' (40)
Using (40) in {39) and looking at (11) gives
RB'a’Ba = Raﬂa'ﬂ" (41)

Therefore, (38) becomes
Wot) = ? ;?23} Ug ol DUBHEVR 150 U H(E VU 1 (2)
= W, (8). (42)

This completes the proof of (36).

The proof of (37) requires use of (11) and (4) also.
Taking (29) and using (11) for y = 8 gives

Wp,( t)-EZEZ Up ol NUG0) Ropourge Uai (DU, (1)

-EEEZS{U%(!)UB ()80 21 Q8068 Uy (W 5 ()
+ Upo(t)UsgH( l)ﬁssfz Qocore Uk (YU, 50 (1)
— UgolVUggH () Qs cve Ush (WU, 5:(2)
~ UgaOUsH)Q urop 8 Ua H DU, 51 (1)]

- %p%}? Ug&(t)?@mw Uy ()
+ %EZ Vool N2 Qociors Uui 1)
—22222%6)05 ()Qpprere a,,l(t)v ae{t)

= ZZEZ}E Uga(t)Ua (t)QBB'a’a oyl(t) B'((t)?,)

The terms with the §,, factor give zero for u # 6, and
(40) has been used to combine the remaining terms.
With (4), Qg4 may be written as

f (Mys ()M,
Using (44) in the last equality of (43) gives
Wy, (£) = 22222] ([Usd(6) Mg (1)U, 5, (1)]
X [Ugolt) Moy o(SYUZA(O]) ds
—2f (2L U, M350V (0]
X {EE p G “OP ds

=2 I U0 oo OO
x [ Z)Z}U*(s)M o (¥ ()] ds. (45)

sprara = wals) ds. (44)

a'a(s)b:t}

This last equality involves renaming indices inthe
first factor and setting all time variables equal to s
in the second factor. The time variable change is
permissible because in (4) a delta function (¢ — s)
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occurs. The expression given by the last equality of
(45) has an integrand which is positive since the inte-
grand is the product of a function with its own com-
plex conjugate, and the two-time variables result in a
delta function when the stochastic average is per-
formed., These properties correspond to the positive
definiteness of @, in (44). The final result is
that Wep(t) =0, which proves (37).

Having now proved (36) and (37), it is possible to
complete consideration of (35). Using (36) immediate-
ly gives

d D(t)

H(l) = ZEE W(O[D,(£) — Dy(t)] log, oo (49
Noting (37) and the inequality
(X —~Y)log,(Y/X)=0 forall XandY (47)

gives
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d

B?H(t) =0. (48)
This completes the proof of an “H theorem” for
multiplicative stochastic processes.

CONCLUDING REMARKS

The approach to the mathematical formulation of non-
equilibrium phenomena based upon multiplicative
stochastic processes has resulted, in this paper, in a
derivation of an “H theorem.” Once the assumption of
a fluctuating contribution to the Hamiltonian of a sys-
tem has been made, all consequences quoted or de-
rived in this paper follow rigorously from that single
assumption, How far one can go toward a rigorously
established, comprehensive theory for nonequilibrium
phenomena remains to be investigated.
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change of a scalar particle of zero mass is transformed to an algebraic equation with the help of the dynamical
group SO(5,2). From this equation a one-parameter integral representation of the Green's function is obtained
in the case of maximal binding, and from this representation the Green's function is calculated in terms of a
hypergeometric function. The equation for the f-dimensional nonrelativistic Coulomb Green's function is also

transformed to an algebraic equation.

1. INTRODUCTION

It is well known that the symmetry group of the Bethe—
Salpeter (BS) equationl-4 for two scalar quarks inter-
acting via the exchange of a scalar particle of zero
mass to form a bound state with vacuumlike 4-mo-~
mentum is the group SO(5).5 The eigenfunctions of
the problem, which are the five-dimensional spheri-
cal harmonics, can be accommodated into a single
irreducible representation of the group SO (5, 2), which
is the noninvariance or dynamical group of the above
BS equation.® If the energy—momentum 4-vector of
the bound state is timelike, spacelike, or lightlike, the
representation SO(5, 2) splits into a direct sum of
SO(4, 2) representations.6+7 These group theoretical
aspects of the above BS equation were used to trans-
form this equation to an infinite component wave
equation. It seems not to have been recognized, how-
ever, that taking into account these group theoretical
properties one can construct explicitly the Green's
function of the problem.

In Sec. 2 the BS equation for the Green's function in
the general case is transformed to an algebraic equa-
tion, i.e., an equation involving tensors and generators
of the group SO(5, 2). If we drop the 6-function term
we obtain the infinite component wave equation for the
BS wavefunction, generalizing in this way the corres-
ponding result of Ref. 6. In the case of maximal bind-
ing, the equation for the Green's function is solved,

and a one-parameter integral representation is ob-
tained. The integration is performed, and the Green's
function is expressed in terms of a hypergeometric
function,

It has been found that the group SO(f + 1) is the sym-
metry group®:9 of the f-dimensional analog of the
nonrelativistic # atom for f= 2,3,...,and that the
group SO(f + 1, 2) is the dynamical group of this
problem.6 Schwinger? used the SO(4) symmetry of
the H atom to obtain a one-parameter integral repre-
sentation of the Green's function. The f-dimensional
Coulomb Green's function in momentum-space has
been calculated recently by Hostler.11 In Sec. 3 the
equation for the Green's function of the f-dimensional
H atom is transformed to a simple algebraic equation.
The Coulomb problem is treated in Appendix B.

2. BETHE-SALPETER GREEN'S FUNCTION

In a previous paper® the BS equation of two scalar
quarks of equal mass, interacting via the exchange
of a scalar particle of zero mass, was transformed
to an algebraic equation with the help of the dynami-
cal group SO(5, 2). We shall derive in this section
the algebraic equation in the general case of quarks
with unequal masses, arbitrary energy—momentum
4-vector of the bound state, and also the algebraic
equation for the Green's function of this model.
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Let m;,p;, j = 1,2,be the masses and the 4-momenta
of the quarks 1 and 2. We write

my=m(l+4a), my=m(l—a), 2.1)

and we introduce the total momentum ¢ of the bound
state and the relative momentum p of the quarks by

3(1—A)g.

Then the equation for the Green's function is the fol-
lowing:

py=p+3A+A), py=—p+ (2.2)

[(p +2(1+28)9)2 + (1 + 4)2m2]
x[(p—z(1— A)a)z + (1 —A)2m2]G(p,p’")

)\
- G(p",p") = 64(p — p").
f(p s O (b — )

In the above equation the Wick rotation!2 has been
performed.

(2.3)

Equation (2. 3) can be easily transformed to an infi-
nite component equation by a straightforward appli-
cation of the method of Ref. 6. We shall present in
this section an easier method of performing this
transformation. We make a stereographic projection
of the four-dimensional space into a sphere in five-
dimensional space by introducing the variables 7;:

6‘8:1,...,4,
i=1,...,5,

Tla = 2p5pa/pi2’
= (p% — p2)/p2, @.4)

where

ps =[(m2 + 5 q2) (1 ~ A2)]V/2, @2.5)

An immediate calculation shows that

a‘p =[(p2 +p2)/2p512 d3Q = [p5/(1 + nj)]* dsﬂ(, )
2.6

where d5Q is the element of area of a five-dimen-
sional sphere. Another form of the above relation is

[(1 +ng5)/ps]* 65(Q — Q). @2.7)

84(p —p") =
Also we have
(6 —p")2 ={2p2/1(1 +15) @ + Pl (1 -
and
{[p+ 51+ a)g]2 + (1 + A)2m2}

x{lp— 31 —a)2 + (1 - a)2m2}

= p3/[(1 — A% +15)2} (£ - $@in0)?], @.9)
where the five-dimensional vector ¢} is given by

q; ={(1 — a2)q,,24p}. 2.10)

Using Egs. (2. 6)-(2. 9), we can write Eq. (2. 3) in the
form

4(1— Aa2y1[p% — i(gjn,)?) 1" (Q, Q)

R fd5er e, Q) = 65(0 — '),
T a2 1-—mn;n7

;1) (2.8)

(2.11)

where . ,
4 Yy ps ~N ’ p5
re,e) =(755) S0 (73) - @12

J. Math, Phys., Vol. 13, No. 11, November 1972

E. KYRIAKOPOULOS

It follows from the Introduction that in our treatment

of the BS equation we shall make use of the represen-
tation of the group SO(5, 2) whose basic functions are

the five-dimensional spherical harmonics. We intro-

duce a spherical polar coordinate system in the five-

dimensional sphere as follows:

N4 = €08SY, T7Ng=singxcosy, ng= sing siny cosd,

1, = siny siny sinf sing, 1, = siny siny sinf cosd.
(2.13)

We shall take the following representation of the five-
dimensional spherical harmonics

YimimOG¥,0,9) = (27)"1/2 (siny)r 1@ % 1/2

X (cosy)(siny )¢ €L, (cosy)

X (sind)m @7 1/ 2c0sh) eims (2.14)
where

N_l=un—-1=21= |m]. (2.15)

The C¥(x) are normalized Gegenbauer polynomials

given by
vy _ (v +R)TE + D[TW)]2\V2
ez = e D OB e @10

with CY(x) the usual Gegenbauer polynomials.13 The
above-defined spherical harmonics are orthonormal.

To transform Egq. (2.11) to algebraic form, we consi-
der the relation

1 e oy Yenen @Y @)
1—mn,m; Non,l,m NV + 1)
whichisa consequence of the Funck-Hecke theorem.14

Let us assume that the function I'/(2”, ') has an ex-
pansion of the form

QL) = 2

Nl U,m’

,(2.17)

hN’ ', U, m’ (77 ) N, U, m’(n )
2.18)

Using Eqgs (2. 17), (2. 18), and the orthogonality proper-
ties of the spherical harmonics, we get

FI(Q”, Q)
1—njnf

5 Byn,t,m () Yoy, g g k)
NV + 1) ’

(2.19)
Let L} , p, v=1,2,...,7,be the generators of the
SO(5, 2) representatlon whose basic functions are the
five-dimensional spherical harmonics. The diagonal
generator Li, satisfies the relationl5

[ asqr = 8r2

Ny, l,m

LiaYymim= N+ 2)Yy 0 (2.20)
Therefore, we get from Eqs (2.19) and (2.20)
Jasqr QN _ gra g2 11,00, (2.21)
1—n;m
and Eq. (2. 11) can be written in the form
4(1 — A2)1[p2 — 5(g;n,)2] T (Q, Q')
— (Lg% —)IT(Q, Q) = 85(Q — Q) (2.22)
or
4(1 — A2y 1(Le2 — D[p2— 3(gim,)2] T (@, Q)
—AT(Q,9Q') = (L2 — 1) 65(Q—). (2.23)



BETHE-SALPETER AND COULOMB GREEN'S FUNCTIONS

Defining T'(R2, 2’) by
T(Q,9Q) = 41— A2)1[p2 — 3(g;n,)?]T"(Q, '), (2.24)

Eq. (2.23) becomes

;[1 - <zszi51> Z:I (L5 — 1) — £ e, Q)

- [1_ (‘;;1) 2} (Liz—dos@— ), (2.25)

where

g =A(1—42)/p2. (2.26)
It has been shown in Ref. 6 that [see equation preced-
ing Eq. (4.26) of Ref. 6]

2.27)

¥y oom = @i /)Yy n,0,m = Liz L 1YNn I,m*

Therefore, Eq. (2. 25) becomes

3{1 <q_L275L_1>] (Le5— %)—ggr(n,sz')

4iLirLgh\? s
= [1 - <_7_6_7) ](L’(S% —3)65(Q — ) (2.28)
2

The above expression is the infinite component equa-
tion of the BS Green's function in the case of two sca-
lar quarks of unequal masses interacting through the
exchange of a scalar boson of zero mass to form a
bound state with an arbitrary total momentum 4-vec-
tor (timelike, spacelike, lightlike, or vacuumlike), in
an arbitrary Lorentz frame. If we omit the term
which contains the 6 function, we get the infinite com-
ponent wave equation of the BS equation in the above
specified case. If the quarks have equal masses, the
total momentum 4-vector is timelike, and, if we go in
the Lorentz frame in which the bound state is at rest,
we find the expression of Ref. 6. We can get rid of the
inverse generator L4 by using the relation

(Lg% — L, L _2L — Li Lg,.  (2.29)
We shall calculate the function I'(2, Q') for ¢, = & = 0.
We get

(2.30)
From Eqgs (2.20), (2. 30), and the expression
65(9_91) = E YN.n,l.m(g)Y;.n,l.m(gl)’ (2'31)
N,n,l,m

where £ and £’ are two unit vectors in the five-dimen-
sional Euclidean space specified by the set of angles
2 and ', respectively, we get

» NN + 1)
N.nlom NN+ 1)—g
X Yy nrnk8) Yonsm(€).
The above expression has poles at

rQ,) =

(2. 32)
A= NI + D)m2, (2. 33)

i.e., at the physical eigenvalue spectrum as expected.

We want to find an integral representation for the
function IT'(Q2, ') of Eq. (2. 32). We havel6
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E YN.n.l,m(g)Y;,n,l.m(E,) =

n,l,m

[(2N+ 1)/8772] Cg/_zl(gigli)-

(2.34)
Then Eq. (2. 32) becomes
. NN+1) 2N+1
r Q, Q) = E C3/2
( ) N1 NN+ 1)—g 872 (6:8%)
—se—o)+ & 3 11 + 1 )
872 NAW+3+a N+3—a
X G2 (&, £)), (2.35)
where
= (g+ Pz, (2. 36)

Equations (2. 35) give the expansion of the BS Green's
function in a series of Gegenbauer polynomials. We
havel3

1
~E w1022 R
[(1—p)2 +pCE— £)232 a1’ wil g)(z.37)

Therefore, the second term on the right-hand side of
Eq. (2. 35) can be written in integral form. We find

r,)=2:o0— ) )
1 (1/2)+a 1/2)-a
+ & [Tap P . 2. 38)
812 "0 " [(1—p)2 +p(E — £)2]%/2
with the restriction (for a real and positive)
a< §. (2. 39)

This restriction comes from the fact that after expan-
sion of the denominator of the integrand of Eq. (2. 38)
and integration term by term, all exponents of p must
be positive in order to give a finite result atp = 0.

The function I'(§2, 2') of Eq. (2. 38) can be expressed
in terms of a hypergeometric function. Introducing

the variable p’ by p’ = 1/p we get
1 1/2)+a
[ dp P
0 [(1 —

P2 +p(t—
pr(1/2)-a

> o]
= dp'
fl [(1—p)2 +p'(t—¢&
Therefore, we get17
fl i p/2)a 4 p/2)-a
fo]
0 [(1—p)2 +p(t— £)2]%2
= |7 dp par2-e(p —y,y32(p — y.) 32
0
= (y)¥2 y)eBG —a,z +a)
X o F1(2,% — a;3;1— (3. /),

gl)2]3/2

e @40

2> Rea> %,

(2.41)
wherey, = £, &} £ [(£,£1)2 — 1]V/2 and B is a beta
function. For

=[(5;£7)% — 1]/(8; £1)3, (2.42)
we getl8
Fl(% —as%;s;l— (J’—/jh))
=,F G —a,%;3,222/(1 + 2)1/?)
=(1+ZV2)®/2-a,F.(3—3a,3 —%a;2;2).
(2.43)
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The above hypergeometric series can be further sim-
plified. Using Eq. (2. 42), we get19

zFl(%—éa,%-%;z'[g'g" 2-1 ] (§ 5')2)
=(—§,8)W2a F G —a,} +a;2;3(1 + £,£))).

(2. 44)
From Egs. (2.38) and (2.41)—(2.44), we get
rQ,0)=068—')+ (g/812)BG —a,2 + a)
X F (3 —a,3 +a;2;1— 4(¢ — £/)2). (2.45)

Another one-parameter integral representation of
(2, Q) is the following:
1
TQ ) =— [, do(pV/2a + pas2r-a)
gr2 “0
d2 p2

—_— 2.46
Q7 s e R

with a< 3. To prove that Eq. (2. 38) follows from Eq.
(2.46), we integrate Eq. (2.46) by parts twice and get

’ . 3 ") g 1
(e, 9) = lim —— + 5 [Ty
( ) 0=0 472 [0-2 + (& — g')2]5/2 872 fo P

p(1/2)*a + p(l/2)‘a

e +pe ez 47
It is shown in Appendix A that
i TG+ 1) o
00 g f/2 [02 + (€ — C')z](ﬁl)/z
=§/1(Q — '), (2.48)

where £ and {’ are two unit vectors in an (f + 1)~
dimensional space, specified by the set of angles
and ', respectively. Using Eq. (2.48) for f = 4 we
easily find that the expressions (2. 38) and (2. 46) are
identical.

The integral representations for the Green's function
G(p,p’) can be easily found from Eqs (2.4), (2.7),
(2.8), (2.12), (2.24), (2. 38), and (2.46). We get

4 1
(pp)~-2—j;3 se(p—p) + 228 [ ap

p(l/2)+a 4 p(l/2)~a
(04054 —p)2 + 4m2pZpi2p(p — p')2]3/2

X

(2.49)
and

G(p,p") = f dp(p/2)+a 4 p1/2)-ay =

dp2
X pz
[pfp]2(1 — 0)2 + 4m2p2p/2p(p — p')2]3/2
(2.50)

Also Eq. (2. 45) gives
Glp,p') =—L 64(p— p’) +

2’:%(2 —a,% +a)

X ,Fy <§—a,% +a;2;1 — (p — P))a(2-51)

Pzp'z

3. ALGEBRAIC EQUATION FOR THE COULOMB
GREEN'S FUNCTION

Making use of the O(f + 1) symmetry? of the f-dimen-

sional analog of the Schridinger equation for the non-
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relativistic # atom, one can caiculate the Green's
function of this problem for f = 2,3,---. The case
f = 3 has been investigated by Schwinger.10

The f-dimensional equation for the Green's function
Go(p,p’) in momentum-space is

Zezur[ (f~ 1) d/o"G (pn )
2 4 p2)G p p
®? + 3)Go o, p) ZHTLEU = D] oot
=—2u8/(p—~p), (3.1)
where p2 = — 2uE. Consider the new coordinate sys-
tem
2po by — b3
CB ORI ’Cfl“ B=1,2,...f.
+ p2 2 4 52’ ’
p* + p§ p° + Dy (3.2)
We get then20
dip” = [(p"2 + p3)/2b,) /a1 Q, 3.3)
(p2 + p2)(p”2 + (F-1/2
(P—p') 1= ( (;’p(”)z 28 € —gr)st,
0 (3.4)
and Egq. (3. 1) becomes
. ze2ur[3 (f~ 1))
2 + p2)CfrU/2¢G "N pilz
2 + p3) ¢, p") on G Uizpip,
x [ arigr ®2+ PV 2G(p"p)
(€—-¢m)/1
=~ 2u(% +p) V26 (p - p). (3.5)
Via the relation
2p,
8fp—p)=(—=)/6/"1(Q - @ 3.6
©-p) (p,2+p%) @— ) (3.6)
and the definitions
H(Q,0)=——"— (p2 .|.p2)(f*1)/2
/ (2p0)f
X Golp, p')p'2 + p3) /"2, (3.7)
Kp= Zezp‘/poh, (3.8)
Eq. (4. 5) becomes
Iz (f— H(Q", Q'
H @) — kT2 (f~ 1)) fdf*lﬂ” (7, Q')
2 (fr1)/2 (gE—¢gry-1
=511 — Q). (3.9)

The above equation can be easily transformed to an
algebraic equation by the method which was used in
the case of BS equation, We havel3:16(j=1,2 ,.,,
f+1)

[ ¢]

(1 — 208,82 1 p2)(FD/2 ?1 pN1 CLIIE (€80
Iz (f — D]~
m—lf—:g Yyw.. Yy ,...€)  (3.10)
For p = 1 the above equation gives
1 4nf*1/2
€—¢) 1 TE( - 1)
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1
Y L T L €.
XN,%?"' aN+f—3 "™ N' (3.11)

If H,(2",9') has an expansion of the form

€7, (3.12)

H@,) = 2
2

we get, using Eq. (3. 11),
Hj(Q”,Q’) _
€—¢n/ 1 T — 1]
1
— h U (45 ZVINIIN (4
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The Coulomb Green's function is examined in Appen-
dix B.
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APPENDIX A: PROOF OF EQ. (2. 48)

We want to prove Eq. (2.48), which becomes if we use
Egs (3.4) and (3. 6),
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where P #*1 is a Legendre function of the first kind.
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We have in our case
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Equation (A7) becomes, if we use Eqs (A9), (A10) and
(A11),
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which is identical to Eq. (Al) if we make the substitu-
tion p2 = (p — p’)2. Therefore we have proven Eq.
(Al).

APPENDIX B: f-DIMENSIONAL COULOMB
GREEN'S FUNCTION

Inthis appendix we shall give integral representations
ofthe f-dimensional Coulomb Green's function, an ex-
pression in terms of a generalized hypergeometric
function of two variables, series expansions in terms
of Gegenbauer polynomials, and an approximate ex-
pression for finite angle scattering. Some of these
results have also been obtained by Hostler.11 By a
straightforward generalization of the approach of
Schwinger!© one gets from Eq. (3. 16) the following
integral representation of H($, ).
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valid for v < 1, where the parameter v is defined by
K; = v+ 7 (f — 3). Integration by parts gives
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Integrating by parts again and using Eq. (2. 48), we
can write the above equation in the form
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The function H(Q, 2') of Eq. (B1) can be expressed in
terms of the generalized hypergeometric function in
two variables25 F,. We have26
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Expanding the denominators of the integrands of Eqs.
(B1), (B2), and (B3) in series of Gegenbauer polyno-
mials and integrating term by term, we get, respec-
tively,
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Equations (B7) and (B8) can be easily derived from
Eq. (B10).

The expressions (B1)-(B3), (B6),and (B7)-(B10) can
be easily written in terms of the Green's function
Gq(p,p’'). For example, Eq. (B1) gives
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For finite angle scattering we have

E-T~0, E-T'~0, (p—p)2>0. (B15)

In this case d is small and a simple approximate ex-
pression of the function G, (p, p’) can be obtained
from Eq. (B11). Since the main contribution to the
integral comes from small p, we get
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For d small, the above expression gives
Gep,p')~—C{1 + [v+ 3 (f— 3)] (—a)y v lsmav2d ]
XB(l—v,3(f—3)+v)}, (BIT)
where B(1 — v, 3 (f — 3) + 1) is a beta function. For

f = 3 the second term of the above expression re-
duces to the Green's function found by Schwinger.10
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Thin films are described as idealized systems having finite extent in one direction but infinite extent in the
other two. For systems of particles interacting through smooth potentials (e.g.,no hard cores), it is shown
that an equilibrium state for a homogeneous thin film is necessarily invariant under any continuous internal
symmetry group generated by a conserved density. For short-range interactions it is also shown that equili-
brium states are necessarily translation invariant, The absence of long-range order follows from its relation
to broken symmetry. The only properties of the state required for the proof are local normality, spatial trans-
lation invariance, and the Kubo-Martin—-Schwinger boundary condition. The argument employs the Bogoliubov
inequality and the techniques of the algebraic approach to statistical mechanics. For inhomogeneous systems,
the same argument shows that all order parameters defined by anomalous averages must vanish. Identical re-
sults can be obtained for systems with infinite extent in one direction only.

1. INTRODUCTION

In the past few years, a number of authors1~6 have
used the Bogoliubov inequalities to show that specific
long-range order parameters must vanish for one-
and two-dimensional systems. Since their conclu-
sions apparently contradict the experimental obser-
vations of thin-film superconductivity? and super-
fluidity,8 it is natural to be skeptical of these argu-
ments. The purpose of this paper is to reinforce the
previous conclusions by means of a more general
proof, which uses the rigorous techniques and results
of the algebraic approach to statistical mechanics.

The first result we need is the existence of a general
relation between long-range order and broken sym-
metry. This relation allows us to avoid any questions
about the validity of the Bogoliubov quasi-averaging
method? used in previous proofs, and it also allows
us to carry out the argument without making a speci-
fic choice of order parameter. With the assumption
that the Hamiltonian can be written as the sum of a
kinetic energy and an interaction term, we prove
directly that a state describing a homogeneous thin
film cannot exhibit any broken internal symmetry.
This conclusion holds equally for long- and short-
range potentials; therefore, the conventional descrip-
tions of superconductivity and superfluidity in terms
of broken gauge invariance will not work for thin
films. We also show that a thin film state cannot ex-
hibit broken translation invariance provided only that
the potential satisfies a range condition previously
found by Mermin.3 Thus the usual descriptions of
crystalline and magnetic ordering are not applicable
to thin films. The assumption made above about the
Hamiltonian excludes the class of singular potentials
for which there is'no clear separation of kinetic and
potential energy; consequently, we cannot draw any
conclusions for hard-core systems.

For inhomogeneous thin films, the argument can be
adapted to prove that all order parameters defined
by anomalous averages must vanish, but one cannot
conclude that the state has no broken symmetry.

Since no rigorous connection between long-range
order (defined by ordinary averages) and the exis-
tence of anomalous averages has been established in
the case, the absence of the latter does not preclude
the existence of the former.

It will become obvious that our argument also serves
to exclude long-range order for one-dimensional
systems. Therefore, this case will not be explicitly
considered.

In Sec. 2 we sketch the necessary theoretical back-
ground, and in Sec. 3 we present the argument that
establishes the connection between long-range order
and broken symmetry. A proof of the Bogoliubov in-
equality is outlined in Sec. 4; in Sec. 5, the inequality
is applied to prove the impossibility of broken sym-
metries for homogeneous thin films. The case of in-
homogeneous films is treated in Sec. 6 and is followed
in Sec. 7 by a discussion of the results.

2. THEORETICAL BACKGROUND

The appropriate setting for our discussion is given by
the algebraic formulation of statistical mechanics as
described for example, by Haag, Hugenholtz, and Win-
nink10 (HHW). We begin with the Fock space 9, (T),
where I" is the configuration space relevant to the
problem. One usually takes I' = R”; but we will con-
sider instead the space I' = R2 X I where [ is an in-
terval of length L. In other words, we assume that
the physical system involved lies between two infini-
tely extended parallel planes with separation L. For
each bounded region A CT there is a subspace 95 (A)
and a von Neumann algebra %(A) consisting of bounded
operators on 9Hz(A); the C*-algebra % of quasilocal
observables is then defined as the norm-closure of
A, = U, AW, A state w is a positive, continuous,
normalized linear functional on . A state is said to
be locally normal if its restriction to each %A(A)is
given by a density matrix, and w is a Gibbs state when
the following limit exists for each A ¢ ¥, :

W(A)=1im 0,(4), w,(A=2g, tr(e®¥n " 4),
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where H, and N, are respectively the Hamiltonian
and number operator for the region A, ; the trace is
taken over 9(A,); 2, is the normalization constant;
and the regions A, satisfy A, ,; O ALUA =T,
Since %A) is a von Neumann algebra, any Gibbs state
is locally normal.

The Gel'fand-Naimark-Segall0 (GNS) construction
for any state w yields a Hilbert space $,a cyclic vec-
tor &, and a representation map 7: = £(9) (the
bounded operators on ) with the property

w(l) =(Q,1(AQ) VAec A
For later use we need to add certain unbounded ob-
servables to ¥%;this can be done as follows: We say
that a closed, densely defined operator @ is affiliated1?
to A(A) if the spectral projections of (@ Q)1/2 all
belong to (A). Sewelll2 has shown that if w is
locally normal, the map 7 can be extended to the
closed densely defined operators affiliated to A(A)
for some A, For each such operator @, 7(@) is a
densely defined, closed operator on . We will say
that @ is w-affiliated to 1 if it is affiliated to some
%A(A) and if £ € Dom[7(Q)].

In the algebraic approach to statistical mechanics,
the description of time translation is based on the
sequence of maps {an(t)} defined by

a,()A = U, (AU, (@Y1, Ae 9,
U, () = explilH, — uN,)].

The algebra (A)) is to be constructed so that a, is
an automorphism on % (An). In HHW it was assumed
that for each A ¢ %, the sequence {an(t)A} is norm-
convergent; this is sufficient to guarantee the exis-
tence of an automorphism a (f) on % representing
time translation. This limit has been shown to exist
for certain lattice systems;but continuous systems
present greater difficulties, as evidenced by the ex-
ample of the ideal Bose gas for which it can be shown
that o, (¢) cannot converge in the required sense. In
view of these difficulties, it is important to note that
our argument will not depend directly onthe existence
of @ (?),but only on the following consequences of its
existence:

(a) Time translations are realized by a group of
automorphisms {y(t)} acting on the bicommutant
T(A)”; the group is implemented by a strongly
continuous group of unitary operators {v (t)g} act-
ing on $ and leaving the cyclic vector Q invari-

ant.

(b) The Kubo-Martin-Schwinger (KMS) boundary
condition is satisfied in the form

Jat ft — B, 1By (OT(4)Q)
= [at fO)(@, v On (AT (B)Q),

VA,Bc N and f € D (the space of C* functions
with compact support in R).

The fact that our argument involves only (a) and (b)

is of particular interest because of the alternative
treatment of time translations proposed by Dubin and
Sewell.13 In their theory, the strong convergence con-
dition on {a n(t)} is replaced by a weaker condition on
the behavior of time-dependent correlation functions
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for a Gibbs state; in this way, the problem of the ideal
Bose gas is resolved, while the consequences (a) and
(b) are retained. Since the necessary properties (a)
and (b) follow either from the strong theory of time
translations given in HHW or from the weaker as-
sumptions of Dubin and Sewell, we will take (a) and
(b) as the starting point for our discussion.

The other groups of physical symmetry operations
(for example, space translations, gauge transforma-
tions, etc.) can always be represented by automor-
phisms on % and they also have a local structurel4
that will be of interest later on. A one-parameter
group F = {a )\} of automorphisms is said to be
locally genevated if there is an operator-valued dis-~
tribution ¢(x) acting on 9 (I') that satisfies

(1) For a real test function f € D(T), q(f) is a
self-adjoint operator w-affiliated to .

(2) For a suitable sequence {f”} C ®(T'), and any
Aec %o, cF,

oA = noran-Iim exp[irg(f,)1A exp[—irq(f,)].
* @.1)
The choice of {f,] depends on T'; we will exhibit
in Sec. 5 the sequence appropriate to our prob-
lem. It is reasonable to suppose that all groups
of physical interest are locally generated. Fin-
ally, we remark that the useful automorphism
groups are symmetries of the Hamiltonian, this
implies that the local generator ¢(x) must satisfy
a continuity equation. In the present context, this
equation takes the form12
(d), [g—t mqx), +V -n(I(x))} sz) =0 Vde ),
2.2)

where ('), = y(t)7(*), and I is an operator of the
same type as q.

We will always assume that the Hamiltonian H, for a
finite region A, can be written as the sum of a kine-
tic energy term H, , and an interaction term H,; and
that the commutators [q(f), H,,] and [¢(f), H ;] have a
common dense domain in $(A,). Under these condi-
tions the current I can be written as the sum of con-
tributions from the kinetic and interaction terms in
the Hamiltonian. This assumption is essentially a
regularity condition on the interaction potential;
therefore, it is unlikely that the arguments to follow
can be applied to singular potentials such as those
with hard cores.

3. LONG-RANGE ORDER AND BROKEN
SYMMETRY

Let G be a group of physical symmetry operations
represented by an automorphism group {o a8 € G}t.
Then a state w is said to be G-invariant if w(@,A) =
w(A) Vg € G,A € A—and to be G-ergodic if it is an
extremal point of the convex set of G~invariant states.
Ruellel5 has argued that pure thermodynamic phases
should be described by G-ergodic states, where G is
the invariance group for the Hamiltonian,; therefore,
we may suppose that all states of interest are G-
ergodic.

For homogeneous systems, G will include the spatial
translations T as a subgroup; we introduce the follow-
ing notation for the action of T on U:
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AR)=a, A VxeT,Ac ¥
and also define the corvelation function C, by
C,®) = w({A®),A™}),

where {', } denotes the anticommutator and A~ =A —
w(A). A state is said to be strongly clustering if

lim C,(x) =0,

jx| o0

VAe ¥,

and weakly clusteving if

lm [1/v(n)] [, d3% C,®x) =0, VAe ¥, (3.1
A—w

where, for example, A = © in the sense of van Hove.16
We will say that a state w exhibits long-range order
if, for some A € ¥ ;, the weak-clustering condition
[Eq. (3.1)] is violated. Note that this definition is
stronger than simply requiring C,(x) = 0 as |x|—x,
which would be a violation of the strong cluster pro-
perty. There are two reasons for choosing this defi-
nition: (1) It agrees with the conventional definitions
used in the study of Bose condensation, superconduc-
tivity, crystalline order, etc.; and (2) there are rigor-
ous general theorems relating the weak cluster pro-
perty to the symmetry properties of the state. The
first such result is Theorem 3.1.

Theorem 3.1: A T-invariant state w is T-ergodic
if and only if it is weakly clustering.17 In other
words, w exhibits long-range order if and only if it
fails to be T-ergodic. The connection between long-
range order and broken symmetry will be provided
by the following theorem.

Theorem 3.2: Every locally normal T-invariant,
KMS state w is the resultant of a unique probability
measure p, carried by the locally normal, T-ergodic,
KMS states,

w(A) = [duy0)(4), VAec %
The measure yu, defines the ergodic decomposilion
of w. This theorem, without the KMS condition, is
given by Ruelle.18 To include the KMS condition, we
need two other facts about integral decompositions
on C*-algebras. First in addition to the ergodic de-
composition, there is a central decompositionl?® de-
fined by a probability measure g, whose support con-
tains the support of pgz. Second, the central decompo-
sition preserves the KMS condition; i.e., the measure
i, for a KMS state is carried by the KMS states.19
The combination of these two remarks with the theo-
rem as given by Ruelle yields Theorem 3. 2.

The states which appear in the ergodic decomposition
of w are labeled by parameters that are unimportant
for the measurement of local observables, e.g., the
phase of a condensate wavefunction, the orientation
and location of crystal axes, etc, Since a state w ex-
hibiting long-range order cannot be T-ergodic states,
and w can, for all physical purposes, be replaced by
any one of the states in the decomposition. Note that
these states cannot be fully G-invariant, since the
original state was assumed to be G-ergodic. This
remark provides the connection between long-range
order and broken symmetry. In other words, a state
with long-range order, that is, one that violates weak
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clustering, can always be replaced by a state that is
weakly clustering but has less symmetry than the
Hamiltonian for the system.

4., BOGOLIUBOV INEQUALITIES

The principal result needed for the remainder of this
paper is the well-known Bogoliubov inequality,® In
the context of infinite volume systems, the inequality
is based on the following theorem.

Theorem 4.1: If w is a [locally normal] KMS state,
then the bilinear form (X,Y) defined by

Ye), Xyen¥, 4.1

-iT

1 [
(X,Y)—_—Efo dr (9,Xt

is a norm-continuous inner product on 7 ()",

In another publication,20 a version of this theorem
was proved under the assumption that time transla-
tions are given by automorphisms on %; however, the
proof is easily adapted to cover the case of a state
satisfying (a) and (b) of Sec.2. One simply replaces
% by 7(%)” throughout the argument.

We should also note that Theorem 4.1 remains valid
if we drop the assumption of local normality. How-
ever, this assumption is essential for applications to
unbounded operators.

The Bogoliubov inequalities follow from [Eq. (4. 1)] by
choosing X = 7(K) and Y = i@ /0¢)n(M™),. We obtain

A&, KM, (M) = 2/8) K[k, M) |2,

where K,M € %,{*) = (R, 7(-)?); and, by abuse of nota-
tion, M stands for (0/0t)n(M),,_,.

(4.2)

5. ABSENCE OF BROKEN SYMMETRIES IN
HOMOGENEOUS THIN FILMS

A thin film system is one which has the copfiguration
space I' = R? X I discussed in Sec.2. We take the z
axis along the interval I and apply hard-wall boun-
dary conditions at z = 0, L. With these conventions,
the Hamiltonian is invariant under translations and
rotations in the x-y plane; therefore, we take G to be
the product of the two-dimensional Euclidean group
with the relevant internal symmetry group (for ex-
ample, gauge transformation, spin rotations, etc.). We
also assume that the interaction potential is invariant
under the internal symmetries. This assumption is
always satisfied for gauge transformations, but for
spin rotations it means that the potential is spin de-
pendent.

Let w, be a G-ergodic state describing a pure phase
of the thin film. We want to know if this state can ex-
hibit long-range order as we have defined it. Accord-
ing to the discussion in Sec. 3, this is the same as
asking whether the state w, has a nontrivial ergodic
decomposition into non-G-invariant states. We recall
that if w, is a locally normal, KMS state, the states

in the decomposition will have the same properties.
A negative answer to the last question is then provi-
ded by showing that there are no broken symmetries.
We begin by considering the internal symmetries,

Theorem 5.1: Every T-invariant, locally normal,
KMS state w for a thin-film system is necessarily
invariant under any one-parameter group F C G of

J. Math. Phys., Vol. 13, No. 11, November 1972



1738

internal symmetries locally generated by a conserved
density g(x). Hence, there can be no long-range order
associated with a broken internal symmetry.

For the proof, we first choose operators K and M to
be substituted into the Bogoliubov inequality [Eq.

(4.2)],
K= [ d2x e A(x),

M= [ d37 @) e T q), (5.1)
where A € %, and q(r) is the local generator for F.
We have adopted the convention that x, x’, etc., are
vectors with vanishing 2 component, while r, r’ denote
general vectors; also, the momentum vector k has no
z component., The area S, is related to the sequence
{fn} of test functions that we must now specify more
precisely. Let A, be a right-circular cylinder with
axis parallel to the 2z axis, radius R, and height

L, < L;we denote by A} the coaxial cylinder with
radius R, + a and height L. The function f, € D(T)
is chosen to satisfy

1, reA,

Jux) {0, re T\A).

We take S, = TR2 to be the area of the base A,. We
substitute the chosen K and M into Eq. (4. 2), divide
through by V(A,)2,and take the limit A, = 0, which
means that we first let L, 2 L and then letR,— ©
as n—> ©, We briefly sketch the calculation of the
various terms involved:

tim (1/5,) (K, K1} = [d2x eiex({A(x), A}
S =C,m,

where we have used translation invariance and the
notation = for the Fourier transform. In a similar
way we find

lim (1/S,){[K,M*)) = lim [d37 f,(r)e*&x(A,q(r)]).
ne e (5.3)

Since A € 9, ,that is,A € A(A,) for some finite re-
gion A,,the right-hand side of Eq. (5. 3) will become
independent of A, as soon as A, 2 A,; consequently,
the limit 2 — 0 will commute with the limit n — o,
Thus we have

(5.2)

lim lim Si<[K,M]>=1im ([A,qa(f)D
k>0 norx n n—=>0
= l% (CY)\A>>\:0, (5-4)

where the last line follows from Eq. (2. 1). The re-
maining calculation involves the continuity equation
(2.2) for q. We have

lim —1 (M, (iM)]) = lim (_—z)f dsr’ f(r')eik-r’
n—> 0 SnLZ n—>o0 G LE

n n

x <sz [TI(M), ait Tr[q(r’)]t]ﬂ>

We have assumed that M is w-affiliated to ¥; conse-
quently, 2 € Dom(n (M)), and the weak continuity equa-
tion (2. 2) gives, after some integrations by parts,

i L (o, ) = b J d2x (70,7, 00,

n'n (5.5)

J.Math. Phys., Vol. 13, No. 11, November 1972

GARRISON, WONG, AND MORRISON

where g(x) = L1 fOL dz q(x, z), etc., and repeated vec-
tor indices are summed. In obtaining Eq. (5. 5), we
have dropped terms containing factors of v'f, (r’),
which vanish everywhere except in the “skin” region
between A, and A},. The contributions from the “skin”
on the sides of A, are eliminated by the factor S;1;
and the contributions from the regions above and be-
low A, vanish by virtue of the hard-wall boundary
condition, which we impose in the form

Lm [ d%r b, @)X, @) =0,

whenever %, is a delta sequence in the z coordinate
concentrated at either boundary plane. The terms
V.S evidently form such a sequence.

At this point we first make use of the assumption that
the internal symmetry generator g(r) commutes with
the interaction term in the Hamiltonian. One typically
has

q(r) = ¢ () TyY(r),

where I' is a Hermitian matrix acting on the internal
degrees of freedom only. The corresponding current
is

I= 2imy1YTvy — VY iTy),

and by using the equal-time commutation relations
we can compute the integral in Eq. (5. 5) explicitly to
obtain

lim (1/S,L2){[M, (M)*]) = Wkz, (5.6)

n=r a0
where

W= (mLy1{y T2y) < o,
Substitution of Egs. (5. 2), (5.4), and (5. 6) into Eq.
(4.2) yields

“ 2 | 3 2
k2C,(k) = BW ﬁ(a)\A>)\:o I (5.7)

Thus the Bogoliubov inequalities give us information
about the small-% behavior of C,(k) for any A. We
obtain additional information by noting that the corre-
lation function for a bounded observable is a contin-
uous, positive-definite function;21 i.e., the matrix
C,lx; — x,) is positive definite for any N distinct
points x4, ..., xN} . For functions of this type we
have the following results,22

Theorem 5.2 (Bochner): Every continuous, posi-
tive-definite function is the Fourier transform of a
finite positive measure. Thus the correlation func-
tion for a bounded observable can be written as

Cax) = [ du)eikx

where the finite, positive measure p is related to the
(formal) Fourier transform C, by (we now consider
a general v-dimensional configuration space)

du (k) = C, (k) dvk/(27)".

Strictly speaking, the steps leading from Eq. (5.1) to
(5. 7) which involve C, are only formally valid; how-
ever, the derivation is easily made rigorous by integ-
rating both sides of the Bogoliubov inequality over an
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arbitrary bounded region in 2-space. We can now
employ an argument similar to Hohenberg's;! first
integrate Eq. (5.7) over a small sphere of radius %
centered at the origin to get
Jecn duriz = 2| 2o, | g0ry, 6.9
k<kg BW oA A4MN=0 0> .
where g(v)%{ is the volume of the sphere. In general
du may have a contribution of positive mass concen-
trated on the origin; we split this term off explicitly
and define dp, by

dp, (k) = du(k) — b6, (k) dk,

where b > 0 is the mass at the origin. The measure
u, evidently satisfies

k2dp, (k) = k2du(k), lim [, , du (k) =0,
k0—>0 0

The first condition allows us to estimate the left-
hand side of Eq.(5.8) by

fk(ko du(k)k? = fk<k0 du, (R)k2 = k3 fk<k0 dp,y (k).

Using this estimate in Eq. (5. 8), we find
2 d 2 -
Jrcry a0 = 555 | ()| g0IRE2.

The left-hand side of this inequality vanishes as k&,
approaches 0;therefore, if v < 2, we must have

S (@A) =0 VAE Y.
Replace A by @, A; then we have

—a%{apfﬁ =0 VA€ ¥,a, €F
this yields

w(aMA) =w(d) VAe ¥, @, € F;
that is, w is F-invariant. This completes the proof
of Theorem 5.1.

The simplest but most important application of this
theorem is to forbid broken gauge invariance for thin
films. The conventional descriptions of Bose conden-
sation in helium and Cooper-pairing of conduction
electrons in metals require broken gauge invariance;
therefore, the phenomena of thin film superfiuidity
and superconductivity cannot be described by the con-
ventional theory. Note that the treatment of Cooper
pairing of electrons interacting through the Coulomb
potential presents no special difficulties since the
proof of Theorem 5.1 is independent of particle stat-
istics and the potential range. Furthermore, the argu-
ment excludes all higher order mechanisms such as
the formation of quartets, etc.

We now turn our attention to the problem of crystal
formation (including magnetic crystals). It follows
from the results already obtained that we may des-
cribe the system by a state which is T-ergodic and
invariant under internal symmetries. By analogy
with the general definition of long-range order we
will say that a T-ergodic state w; has crystalline
long-range ovder if there is a discrete subgroup (lat-
tice group) T, C T such that w, is not T, -ergodic.
The decomposition theorem (Theorem 3.2) remains
valid if T is replaced by T, ; consequently, any state
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having crystalline long-range order can be decom-
posed into states that are T, -ergodic but not T-in-
variant. This corresponds physically to fixing the
location of the crystal lattice in space. The following
theorem shows that this situation cannot arise for
thin films; that is, every T-ergodic state is also T, -
ergodic so that it cannot have crystalline long-range
order.

Theorem 5.3: I the average kinetic and potential
energy densities are finite, and the potential v(r)
satisfies

lim r4*¢ V2 y(r) = 0,

700
for some € > 0,then every T, -invariant, thin-film
state w is also T-invariant; consequently, every T-
ergodic state w, is also T, -ergodic. The second part
of the conclusion follows easily from the first which
is established by a suitable modification of the proof
of Theorem 5.1. Let {x;:j € T,} be the lattice gene-
rated by T, and choose a positive function ¢ € D(R?2)
normalized by

Jazx ¢@x) =1

with support containing the origin but no other lattice
point. Next define A, (x) by

A ® x) = 2 & — X]-)A(Xj);
JjE TL
the sum exists and defines a bounded operator since
at most one term is nonvanishing for any given x.
With the notation used in the proof of Theorem 5.1
we put

K= fsn d2x e ikx 4 (x),
and R
q(r)= e J(r),

where € is a unit vector in the x-y plane and the mo-
mentum J is the local generator for spatial transla-
tions. We have explicitly23

J= (2T WTVY — VYY)

and
Jﬂ(r) =-—VT9 — [d3y Voulr —r’)

x Y@y )y ) v(r),
with

TiQ = & (Ve + Vi 'vy)
— 30,5 (V2YTY + YUY + 20y Tevy).
We next compute the various quantities which appear

in the Bogoliubov inequality. First consider the cor-
relation function

Ck) = lim (1/5,){K,K*}) = lim C,(),

n=r oo /0

C,k) = [ d2x e-ikx C(x),
C,(®) = (1/8,) [ a2z x,(x + x')x, (x')
x ({4,& + x), AL,

where x, is the characteristic function for S,. The
functign C, is bounded by [| A2 for all x and #; there-
fore, C(k) is the Fourier transform of the bounded
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function C(x) = lim C, (x). Next we calculate
A =1lim (1/S,L,){[K,M*]) = lim A,
n—*o0 n=>oc0o

where we set k = 0 to begin with. Inserting the defi-
nitions of K and M, we have

A, = (1/S,L,) [ a2x [a3r x, @f, @) [4,&),ar)])
= (1/S,L,) [d2x [d3 Xa ®) S, (€1) 20 0% — x,)
x{[A,q{x — xj)]). 7€l

In the last step we used the T invariance of the state.
This result may be rewritten as

5, = (1/L,S,) Z;T Jazr [ [azxx,®) & — x,)]
JjE
’ X £, + )[4, ac)]) .

The interchange of summation over T; and the integ-
rals is made legitimate by the faet that the overlap
integral in square brackets vanishes for x; sufficiently
far from S,. Thus we have, apart from surface terms
which will not contribute in the limit,

1 '

A, = [ asr (L D &)L xj)) (A, qlr")]).
n¥n jET]

The commutator vanishes for large r’; consequently,

we may take the limit inside the integral to obtain

A=n, [d3 ([A,q@)])
= — i?’lL e'V(A(X)> Ix:o’

where n; is the density of lattice sites.

Finally we need to calculate

Y = lim (1/S,L2){[M, (iM)']) = lim Y,,

n-roo n—>«
Y, = —(/S,L2)é,¢é, [ d3r [ adr' f,@)f,@)e ikt
X ([d,(r), Ja x)).
The contribution to Y from the T{% term in the con-

tinuity equation for J can be obtained explicitly from
the commutation relations; thus

YO —w,k2 + § (/L) k2(k+e)2,

where 7 is the average particle density and

~

wy = 6,6, lim (1/5,L2) [ d3r f,@®)(V ¥ @)V, ¥ ().

The coefficient w, is finite since the integrand can be
bounded by the kinetic energy density. K we now im-
pose the T, invariance of the state, the large-volume
average can be replaced by an average over the unit
cell s, of the lattice

Wy = (1/L)é‘aéﬂ(1/soL)fsou a3y (V (@) Yy ¥(r)).

The contribution from the potential term requires a
somewhat more complicated but still straightforward
treatment which leads to

YO =—¢¢, [ d3r (e —1)v,V0(r)0@E(L — 2))
X (1/56L2) Js x1 437" W1+ 1)
x Y)Yy + ).

J. Math. Phys., Vol. 13, No. 11, November 1972

GARRISON, WONG, AND MORRISON

Since the potential v(») will usually have a singularity
at » = 0, we first examine the convergence of the 7
integral for small » by splitting off a cylinder Ay of
height L and radius R, centered on the z axis. After
two integrations by parts the dominant term in the
integral over A is found to be

(ke)2 (1/56L2) [, o, d37" [, d37 o)
X YHr + )Yt ) Y)Y + o).

The integral over A is finite by virtue of the assump-
tion that the potential energy density is finite; there-
fore, the integral defining Y converges at small ».
Turning to the large 7 behavior, one sees that the in-
tegral converges uniformly in k if 72*<V2y(r) = 0 as

¥ — «; however, we require in addition that 22y
remains finite as £~ 0 so we must impose

r4*ev2y(r) — 0. If the latter condition is satisfied,

we find

lim F2Y® = ¢ ¢, [ d3r 9(z(L — 2))(k+r)2V,V, v(r)

X (1/56L2) g ; d37" 7 + 1)
x Y)Y )yr+r),
where k = k/k.

Combining the results for Y@ and YU, we see that
there is a constant w < © guch that

Y € wk2

for sufficiently small k. From this point on the argu-
ment is identical to that in the proof of Theorem (5. 1),
and the conclusion is that the state is T-invariant.

We have now shown that thin films cannot possess
crystalline long-range order. The customary des-
cription of magnetically ordered system presupposes
an underlying structure having crystalline long-range
order; therefore, magnetic systems are also forbidden
by the last result,

6. LONG-RANGE ORDER IN INHOMOGENEOUS
THIN FILMS

In the preceding sections, the property of translation
invariance was crucial in establishing the connection
between long-range order and broken symmetry via
the ergodic decomposition (Theorem 3,2). Since in-
homogeneous systems are by definition not transla-
tion-invariant, this general relation between the two
properties is lost. An alternative approach can be
based on the idea of anomalous averages. In this con-
text is is pointless to discuss crystalline states;
therefore, we restrict our attention to a group F of
internal symmetries. Let A0 be the subalgebra of A
formed by F-invariant operators; then % (as a vector
space) has the decomposition % = A% & A*+. Here A*
is the complementary subspace defined by the pro-
jection operation @®:

®(4) =A —lim [p A x, M), A,
a

where {Xa} is an M-net on F, that is, an increasing
sequence of normalized characteristic functions on
F, A state w is said to have an anomalous average
(with respect to F) if w(A) = 0 for some A €U *.
The corresponding ovder parameter ¥ , is conven-
tionally defined by
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¥, = lim [1/V(0)] [, d*y w(A®),
A
that is, as the volume mean of an anomalous average.
One possible definition of long-range order is that
¥, # 0 for some A € . In the present case the cor-
responding correlation function depends on both x
and X',

C,xx)= {A®),AT D ;

but it is more convenient to regard it as a function of
x—x and X = 3 (x + x’). We define a state w to be
mildly inhomogeneous if the following “center-of-
mass” average exists for each A:

D,(x—x’) = 1lim (1/s)fs d2X C, (x,x').
§—> 0
We can now adapt the argument of Sec. 5 to prove the
following.

Theovem 6.1: Let w be a locally normal, mildly
inhomogeneous KMS state for a thin film;then ¥, = 0
for allA € A+, We again define K and M by Eqgs.
{(5.1), and we find

lim (1/8,)({K,K"}) = D, (k). (6.1)
n—
This result is established by first integrating the left-
hand side of Eq. (6.1) (for finite #) with a test function
and then taking the limit n — . The other factors
appearing in the Bogoliubov inequality can be treated
similarly, with the results as follows:

. . 1 . 1 .0
lim lim G ([K,M%]) =1 d2x § =
lim lim o ((K,M")) = Uim o [; d2xig

x <04)\A(x)>)\:0 , (6.2)

lim > ([, @YY =k, [dzx — x) ik xx)
X lm & fy a2X (G6),T,0D. (6.3

Just as before, Eq. (6. 3) has the small-% form

lim (1/S,L2){[M, (iM)t]) = Wk2.

n-*°0

The Bogoliubov inequality now reads
- 2 . 1 d 2
2 > o el 2y —
k2D, (k) = W ‘ }‘1_r>n S, fsn d2x 7Y (a, AN\ -9

The function D,(x — X’) is a continuous, positive-defi-
nite function; therefore, the previous argument re-
quires that

: 1 0, 0 _
}Lnl) 5 fsn a2x —{a,\A@®))\-o=0.
The map a, : A+ = AL is bijective; consequently, the
algebra generated by {((3/00)a, A)y.4:4 € ¥} is
dense in %". Equation (6.4) implies ¥, =0VA € A+,
This completes the proof of Theorem 6.1,

(6.4)

This result is not sufficient to settle the question of
long-range order in inhomogeneous films, since there
is an alternative idea of order parameter that does
not involve anomalous averages. In this approach,
which is a generalization of Yang's concept of off-
diagonal long-range order, one defines &, for A € A+
by

32 = }\im [1/v(a)2] [, d» [, dvy (A@)ATE")).
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If &, # 0, the “density matrix” (A(y)AT(y’)) is said to
have a macroscopic eigenvalue. Long-range order
may then be defined by a nonvanishing ¢, for some

A ¢ U+, If the state w satisfies the inhomogeneous
form of the weak cluster property, that is,

lim [1/V(8)2] [, d% [y 47" Colg,3') =0,
- 00

then the two order parameters are related by ¢% =
I\I/A |2, Unfortunately, in this case there is no general
result24 like Theorem 3.2 that would assure us that
we can always replace the original state by one that
is weakly clustering.

The application of Theorem 6.1 to Bose condensation
shows that anomalous (non-gauge-invariant) order
parameters ¥, are excluded. Thus, Bose condensation
as usually described in terms of ¥, is forbidden for
inhomogeneous thin films, but the argument does not
exclude long-range order of the ¢, type.

7. DISCUSSION

The intuitive idea of long-range order is that some
correlation function C, (x) fails to satisfy the strong
cluster property; that is, C,(x) # 0 as |x|— © ; how-
ever, the conventional definitions used for Bose con-
densation, crystalline ordering, etc., impose the
stronger condition that C, violate the weak cluster
property [Eq. (3.1)]. We have adopted the latter,
more stringent definition for long-range order. One
of the principal advantages of this definition is that
the ergodic decomposition theorem for homogeneous
systems provides us with a general connection be-
tween long-range order and broken symmetry. On
the other hand, we have shown that physically accep-
table (locally normal, T-invariant, KMS) states for a
thin film cannot exhibit any broken internal?5 sym-
metries. Therefore, the phenomenon of Bose conden-
sation which is associated with broken gauge invari-
ance is forbidden. Since the arguments used are inde-
pendent of the statistics of the particles and the range
of the potential, we conclude that the condensation of
Cooper pairs usually associated with superconducti-
vity is also forbidden. The formation of a crystal lat-
tice involves the violation of translation invariance,
which we have shown to be impossible as long as the
potential satisfies the range condition »4*¢v2y(r)—0,
Since magnetically ordered systems possess an
underlying crystal structure, they are also forbidden.

In the case of inhomogeneous thin films, the strong
results discussed above are not available, because of
the crucial role played by translation invariance.
However, we have shown that, even for inhomogeneous
films, the order parameters defined by anomalous
averages must vanish.

In view of the very general nature of the assumptions
required for the proof of Theorem 5. 1, it seems un-
likely to us that the ordered states observed in thin
films (for example, superconductivity, superfluid
helium films, etc.) can be described in the same way
as the analogous phenomena in bulk systems. Thus,
one is forced to look for alternative descriptions.
One possibility is provided by the idea of ‘“weak”
long-range order,26 which is that the generalized
susceptibility for some observable A diverges. This
is consistent with weak and even strong clustering.
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APPENDIX: THE CASE OF UNBOUNDED
OBSERVABLES

Let w be a locally normal, KMS state on the algebra
A and suppose that the unbounded operator A is w-
affiliated to %, The correlation function C,(x) is then
a positive-definite tempered distribution and we have
the following result.22

Theorem (Bochney-Schwartz): Every positive-
definite tempered distribution is the Fourier trans-
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form of a positive tempered measure. Thus there is
a positive measure du(k) related to C,(k) by

du(k) = C,(k)dvk,
which satisfies

| dpk) . o
1+ k|

for some n > 0; furthermore, the integral of du(k) over
any compact set is finite.

The derivation of Eq. (5. 8) from the Bogoliubov in-
equality would be technically more difficult for the
case of an unbounded operator, but if one is willing

to assume Eq. (5. 8), then it is clear that the argument
given in the text will go through equally well for un-
bounded observables. This observation could be used
to avoid the rather complicated estimates used in
Refs. 1-6 which involve assumptions about the finite-
ness of certain physical quantities (e.g., the com-
pressibility).
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terms of the given applied forces only. The analytic structure of the transforms as well as some properties of
the propagators are studied for all possible values of physical constants including the limiting values for un-
coupled oscillators. The inverse transforms not readily available from tables are obtained by carrying out the

integrations explicitly.

The simple infinite chain of masses connected by
ideal springs has been extensively studied as one of
the very few many-body systems in which exact cal-
culations are possible.! A more complex system,
namely the infinite chain of harmonic oscillators, has
also been studied.2 However, very little has been done
on the exact treatment of a semi-infinite chain. In a
recent study,3 the exact dynamics of semi-infinite

J. Math. Phys., Vol. 13, No. 11, November 1972

and infinite chains of harmonic oscillators with fric-
tional and other external forces was studied. The mo-
tion of each of the oscillators was expressed in terms
of the given applied forces and initial conditions.

The present work uses the exponential Fourier
transform method to study the exact dynamics of the
above systems when the initial conditions (at # = 0)
are not given. The motion of all the oscillators is
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and infinite chains of harmonic oscillators with fric-
tional and other external forces was studied. The mo-
tion of each of the oscillators was expressed in terms
of the given applied forces and initial conditions.

The present work uses the exponential Fourier
transform method to study the exact dynamics of the
above systems when the initial conditions (at # = 0)
are not given. The motion of all the oscillators is
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expressed in terms of the given time-dependent ex-
ternally applied forces only. The analytic structure
of the transforms as well as some properties of the
propagators are studied for all possible values of
physical constants including the limiting values for
uncoupled oscillators. The inverse transforms not
readily available from tables¢ are obtained by carry-
ing out the integrations explicitly.

The coupled equations for the systems are

'mjén =—Kx, —px, + ¢,
- k(xn - xn+1) - k(xn - xn—l)(l - 67!551“1)’ (1)

where m is the particle mass, x, represents the
displacement of the nth particle (= 2 0 if semi-
infinite) measured from its equilibrium position, K
and % are the force constants, B is the friction coef-
ficient, 6 is the Kronecker delta (to be inserted if
semi-infinite), and ¢, represents the external force
applied to the nth particle and is assumed to be a
known function of time. When x; is also specified in
addition to all the ¢’s, Eq. (1) for » = 0 provides the
consistency condition between x, and ¢,.

If one assumes that x, and ¢, have the Fourier trans-
forms

X, (0) = Flx, ()] = \/2—’1— S dtx, 0) expliwt), )
1)

¢, (w) = F¢,(t)/k], (3)

then Eq. (1) leads to

Xn+1 + 4(U2 + 22,'“/ —a2+ 5710/4)‘)(71
+ (11— 6710)‘)(71—1 = (Pn’ 4)
where?d
v =w/(2wy), wo = |k/m|1/2 (5)
b= B/| 16km| V2, (®)

a = [(@Qy/w)? +2/2/2, and Q,=|K/m|1/2, (7)

The solutions® for Eq. (4) are

X,;mf - % .Zo.; glrrrlq)y (8a)
— glanO
_% < 2.: or —_Z>> [gln-rl _ glnwrl]q)y’ (8b)
(n=0) ("§10)
Xgsemi = — % % [£1nr1 4 gnire1] 3, (92)
— ano__%Z [gln-rl — E"""](I?y, (gb)
1
where
D =4(2—b2)(A2— b2 1)]1/2, (10)
£=D/2)- 202 -b2) +1, (11)
A=v+ i, (12)
b =(a2—p2—1/2)1/2 (13)

mA, v, w
L
Rev, w
C
=) 7 (=) rer
B’ A A B

FIG.1. Contour for underdamped chains (52 > 0).
L is the original path for the inversion integral.

ImA, v, w

Rev w

FIG. 2. Contour for criti-

cally damped chains
( : /N i )~Re)\ b2=0=g).

l Rev, w

FIG.3. Contour for over-
damped chains (—1 < 2 < 0),

—Re A
L |
| Rev, w
A
C FIG. 4. Contour for over-
damped chains (b2 = — 1),
B=B
Re A
A
ImA, v, w
L
k Rev, w
A
8 FIG. 5. Contour for overdamped
C chains (b2 < — 1),
T ReA

B’
A
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=[(K — B2/4m)/4k|V/ 2 (14) boundary at the particle » = 0 and an effective force

kx o applied to the particle |#| = 1. It can be shown

=[Q3— I2)/(2w,)2]V2, (15)  (see Appendix) that

and — TY)
exp(— -
T = 2uw, = B/2m. (16) G,(t) = ey fo dé cosng)
T

The inverse transforms of X given in Eqgs. (8a)-(9b)
are not readily available from tables, and, hence, the
inversion has to be carried out via explicit integra-
tion. To this end, one studies the analytic properties
of X,,. At first, one observes from (14) that 52 can
take any value in the range (— ©, + ®) depending on
K,8,m,and k. Alsob2> 0,b2 = 0 = 8 (and hence

K = 0),and b2 < 0 correspond to the under-, critic-
ally-, and over-damped oscillator chains, respectively.
The systems with 2 = 0 = 8 (and hence K = 0) are
the undamped simple chains, and the noninteracting
oscillators are represented by the limiting values

b2 =+ ©, The branch cuts for X, are shown in Figs.
1-5 for several values of 2 in decreasing order.
One observes that the cuts are in the lower halves of
the v and w planes. Also,

B8 — 0* for Figs.1 and 2

Im(wA’A, .B,B’) i 0— as
1

and

Im(w,) =0~ as K/k - 0" for Figs.3-5. (18)

By defining an integral

exp(— I't) ginlexp(— 2wyin)

G, (1) = — J,a oD , t>0,

(19)
along any clockwise closed contour C enclosing the

cuts, one can write the inverses of (8a)—-(9b) as
E G, ()*[ &, (t)/m] (20a)
nOxO(t) + [Glp1-1() = Gy 1 (D] Rx 1)/ m ]
¥ ( 5 or '§>[Gn-,(n—quu*m»(z)/mj,
@20  (320) (20D)
50 =3[6,., 0 + G,y OF [0, 0] (21a)
= 8,0%(t) + [G,-1(t) — G, 1 (O)]*[kxo(t)/m]
# 3 (6,1, (0 = G, O118, O/, (21b)
where
AQ*BO = [ arAl - BE). (22)

One can give a physical interpretation of Eqgs. (20a)-
(21b) similar to that given in Ref.3. For example, the
G s are Green functions (or propagators) such that
,A8)*¢, (t)/m represents the displacement compo-
nent in xn(t) due to ¢, during the prior time interval
(— =, ¢). The second propagators in [ | of Eqs. (20b)-
(21b) represent the following reflections: (21a) the
reflections without phase reversal at the stiff-to-
soft boundary located between the particle » = 0 and
the missing particle n = — 1, (20b) and (21b) the re-
flections with phase reversal at the soft-to-stiff
boundary located at the particle » = 0. The second
terms of (20b) and (21b) imply that the effect of speci-
fying x, is equivalent to introducing a soft-to-stiff
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8 sin{2wyt[b2 + sin2(g/2)|1/2}
< 2wo[b2 + sin2(6/2)]1/2 ) )

¢
= exp(— I'?) fo Al'dy(2bwy| 12 — 12 1/2) ], (2w 1) (24)

t
= exp(— Tt) fo dt'Jf{l @3 — T2)(¢2 — +2)]V2},, (2wet’).

(25)
Therefore, one observes that the present solutions in
(20a)—(21b) are identical in form to those for the
systems with specified initial conditions (at ¢ = 0)
except for two expected points: (i) The terms contain-
ing x,(0) and %, (0) are missing and (ii) the lower limit
of the * operation given in (22) is now ¢ = — © in-
stead of { = 0.

The properties of the displacements x, given in
(20a)-(21Db) can be studied by examlmng the proper-
ties of G. For example, one can show that?

G, = exp(— T1)J,, (2wyt) — TG,

— (t/2)€3 ~
G, =— TG, + (te§/21)(G,_; — G,.1),
G

r2)G, +G1), (26)
n =0, (27)

G, =~ 2T exp(— Tt)J,, (2uyl) + (202 — 02 — 203)G,

+ §G,-1 +G,q) + (THEOF ~ I'2)G, +GL), (28)

= (2I'2 — @2 — 23)G, + }(G, | +G,.4)
— 2T (tw3/2n)(G, 1 — G,.q), n =0, (29)
G,(0) = 0,G,(0) = 6,,G,(0) =— 2T6,5,  (30)
G,(®) = 8,001¢/(2wy), and G, (@) =G, () = 0,
(31)

where G is an integral of the type G, given in (24)
and (25) with J; replaced by J,. One sees from (30)
that an immediate effect of the applied forces is to
change the velocity and acceleration, but not the dis-
placement, of the oscillator on which the force is
applied. The first expression of (31) implies that
only the undamped simple chains (i.e.,K =8 = 0)
remember the effect of forces applied in the infinite-
ly remote past. One can show from (25) that

limOG (t) = 6,, exp(— T't)|Q3 — T'2|-1/2
u)o—>
x <(sm) or (sm > t1Qg — re2| /2y, (32)

S20>T.
This is-the expected result because the limit taken
is equivalent to the uncoupling limit # — 0 and the
right-hand side without 6, is the well-known Green
function for the equation of motion for a forced har-
monic oscillator.
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APPENDIX

Choosing the contour C for the integral (19) as shown
in Figs.1-5, one can show that the contribution to the
integral from the circular arcs around A, A’, B, and
B’ is zero (via vanishing or cancellation in pairs)

in the limit of vanishing arc radii. For the remaining
integral along the four edges of the branch cut, it
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is convenient to make a change of variable from X to
6 given by

A =[b2 +sin2(8/2)]V2, g < (0,m).

The sum of the four integrals then reduces to Eq.
(23). For the equivalence of (23) and (24), see
Appendix C of Ref. 3.

1 See, for example, E. H. Lieb and D. C. Mattis, Mathematical Phy-
sics in One Dimension (Academic, New York, 1966); J. Hori, Spec-
tral Propevlies of Disordeved Chains und Laltices (Pergamon,
Oxford, 1968); and A. A. Maradudin, E. W. Montroll, G. H. Weiss,
and L. P, Ipatova, Theory of Lallice Dynamics in the Harmonic
Approximalion (Academic, New York, 1971), 2nd ed.

2 M.A.Huetra, H.S. Robertson, and J. C. Nearing, J. Math, Phys. 12,
2305 (1971) and the papers quoted therein.

3 K.H.Lee, J. Math. Phys. 13,1312 (1972).

4 A.Erdélyi e! al., Tables of Inlegval Transforms (McGraw-Hill,
New York, 1954), Vol. 1, and F.Oberhettinger, Tabellen zur
Fourier Transformalion (Springer-Verlag, Berlin, 1957).

5 To avoid possible confustion, |z|1/2 will be used for the posi-
tive root of |z| and 21/2 for the double-valued function.

8 When x, is specified, (8b) and (9b) are to be used. The consis-
tency condition between x, and ¢, i.e., Eq. (1) for 7 = 0, makes
them equivalent to (8a) and (9a). The algebra leading to (8a)-
(9D) is very similar to that of Ref.3. Although &t '»! = {+D/2 —
2(x2 —b2) + 1]'7! are two solutions of the homogeneous part
of Eq. (4), the terms in X, of the types £ 2! and £7!#!/D for w —
+ © are inconsistent with conditions for the existence of the in-
version integrals.

7 Some properties of g,({) = exp(T{)G, () are studied in Ref. 3.
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The asymptotic behavior of the prolate spheroidal functions of order zero f,(x, ¢), where 7 is the number of
zeros of the function in the interval — 1 < x =< 1, is studied for large values of the parameter ¢ and all values of
n. The method used involves solving the differential equation which defines the functions by using a classical
approximation. The corresponding eigenvalues x , are given by an implicit equation and the norm of the func-
tions is calculated. The functions f,(x, ¢) are also solutions of an integral equation and associated with eigen-
values A, (c). Asymptotic expressions of [1 — A, (c)] are derived by using the values obtained for the norm of
f.(x,c). All these results generalize and interpolate partial results obtained by Slepian and others in two

special cases, namely, »n finite and n ~ c.

1. INTRODUCTION

For a discrete set of values x, of the parameter x,
the differential equation

(—g?(l—xZ)Z—ic+(X_czx2)f:0’ (1. 1)

where c is a real nonnegative parameter, has a real
continuous solution f(x) which is finite for every x
and unique except for a constant factor. it is conve-
nient to fix its amplitude by assuming that f(1) = 1,2
condition which is assumed throughout this article.
For reasons of simplicity, we shall usually omit the
explicit dependence on c¢ of f(x) and of other quanti-
ties. One may order the x, so that x5 < x; < x5
< ---,then the corresponding solution f, (x) has ex-
actly # zeros, in the interval — 1 = x = 1, The func-
tion f, (x) is even or odd according as » is even or
odd;

L (=x) = (= 1)1, (x). (1.2)
They are called prolate spheroidal functions of zero
order.

Some physical applications of these functions arise
from the fact that they are also solutions of the inte-
gral equation

1 N
anfn (x) = [1 ezcxyfn(y)dy (1.3)
and of its first iterate
N AT i Gttt PP (L. 4)
Poooa(x—y)
where
A, = (¢/2m) e, |2, (1.5)

Many details of their properties can be found in the
literature.! Sometimes one needs the behavior of

£, {x) and of A, for large values of c. Partial results
have been obtained by several people in this domain.
In particular, a few years ago Slepian2 gave asymp-
totic expansions of f, (x) and A, for large values of
¢, in two different cases:

(1) when #n is finite,

(2) when # is large and of the same order of magni-
tude as ¢ (n/c ~ 1).

However, for practical applications, the behavior of
f, (x) and X, for intermediate values of z is often
needed. In this article, we aim at giving expressions
of f, (x)and x, for all values of n [n < ¢ + O(logc)],
interpolating cases (1) and (2) treated by Slepian.
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The sum of the four integrals then reduces to Eq.
(23). For the equivalence of (23) and (24), see
Appendix C of Ref. 3.

1 See, for example, E. H. Lieb and D. C. Mattis, Mathematical Phy-
sics in One Dimension (Academic, New York, 1966); J. Hori, Spec-
tral Propevlies of Disordeved Chains und Laltices (Pergamon,
Oxford, 1968); and A. A. Maradudin, E. W. Montroll, G. H. Weiss,
and L. P, Ipatova, Theory of Lallice Dynamics in the Harmonic
Approximalion (Academic, New York, 1971), 2nd ed.

2 M.A.Huetra, H.S. Robertson, and J. C. Nearing, J. Math, Phys. 12,
2305 (1971) and the papers quoted therein.

3 K.H.Lee, J. Math. Phys. 13,1312 (1972).

4 A.Erdélyi e! al., Tables of Inlegval Transforms (McGraw-Hill,
New York, 1954), Vol. 1, and F.Oberhettinger, Tabellen zur
Fourier Transformalion (Springer-Verlag, Berlin, 1957).

5 To avoid possible confustion, |z|1/2 will be used for the posi-
tive root of |z| and 21/2 for the double-valued function.

8 When x, is specified, (8b) and (9b) are to be used. The consis-
tency condition between x, and ¢, i.e., Eq. (1) for 7 = 0, makes
them equivalent to (8a) and (9a). The algebra leading to (8a)-
(9D) is very similar to that of Ref.3. Although &t '»! = {+D/2 —
2(x2 —b2) + 1]'7! are two solutions of the homogeneous part
of Eq. (4), the terms in X, of the types £ 2! and £7!#!/D for w —
+ © are inconsistent with conditions for the existence of the in-
version integrals.

7 Some properties of g,({) = exp(T{)G, () are studied in Ref. 3.
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The asymptotic behavior of the prolate spheroidal functions of order zero f,(x, ¢), where 7 is the number of
zeros of the function in the interval — 1 < x =< 1, is studied for large values of the parameter ¢ and all values of
n. The method used involves solving the differential equation which defines the functions by using a classical
approximation. The corresponding eigenvalues x , are given by an implicit equation and the norm of the func-
tions is calculated. The functions f,(x, ¢) are also solutions of an integral equation and associated with eigen-
values A, (c). Asymptotic expressions of [1 — A, (c)] are derived by using the values obtained for the norm of
f.(x,c). All these results generalize and interpolate partial results obtained by Slepian and others in two

special cases, namely, »n finite and n ~ c.

1. INTRODUCTION

For a discrete set of values x, of the parameter x,
the differential equation

(—g?(l—xZ)Z—ic+(X_czx2)f:0’ (1. 1)

where c is a real nonnegative parameter, has a real
continuous solution f(x) which is finite for every x
and unique except for a constant factor. it is conve-
nient to fix its amplitude by assuming that f(1) = 1,2
condition which is assumed throughout this article.
For reasons of simplicity, we shall usually omit the
explicit dependence on c¢ of f(x) and of other quanti-
ties. One may order the x, so that x5 < x; < x5
< ---,then the corresponding solution f, (x) has ex-
actly # zeros, in the interval — 1 = x = 1, The func-
tion f, (x) is even or odd according as » is even or
odd;

L (=x) = (= 1)1, (x). (1.2)
They are called prolate spheroidal functions of zero
order.

Some physical applications of these functions arise
from the fact that they are also solutions of the inte-
gral equation

1 N
anfn (x) = [1 ezcxyfn(y)dy (1.3)
and of its first iterate
N AT i Gttt PP (L. 4)
Poooa(x—y)
where
A, = (¢/2m) e, |2, (1.5)

Many details of their properties can be found in the
literature.! Sometimes one needs the behavior of

£, {x) and of A, for large values of c. Partial results
have been obtained by several people in this domain.
In particular, a few years ago Slepian2 gave asymp-
totic expansions of f, (x) and A, for large values of
¢, in two different cases:

(1) when #n is finite,

(2) when # is large and of the same order of magni-
tude as ¢ (n/c ~ 1).

However, for practical applications, the behavior of
f, (x) and X, for intermediate values of z is often
needed. In this article, we aim at giving expressions
of f, (x)and x, for all values of n [n < ¢ + O(logc)],
interpolating cases (1) and (2) treated by Slepian.
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Our method is simple. Since c is large, we use a
classical approximation (JBKW method or Langer's
method) in all the regions of space which are not
singular (i.e.,far from the valuesx = + 1 or x =

x ¢2). In the singular regions around x = + 1 (and
sometimes x = 0), the spheroidal functions can be
approximately represented by confluent hypergeome-
tric functions. Solutions in two different regions must
coincide in the domain where they overlap each other,
and thus we obtain compatibility requirements which
determine the solutions and the corresponding eigen-
values.

In Sec. 2, we give the notation used throughout this
article and in Sec. 3 the results obtained. We derive,
in Sec. 4, asymptotic expressions for the spheroidal
function f,(x) in various regions, in Sec. 5 an implicit
relation for y,,in Sec. 6 the normalization integral,
and in Sec. 7 asymptotic expressions for (1 —x,).

2. NOTATIONS

Throughout this paper we shall use the following sym-
bols:

e:u/c,
b=13(c—u), B=2b/c=1—c¢.

X = cu,
(2.1)
The ranges of variations of the various quantities

are as follows:

O=x<o 0=e<1+V/c+0(c?2),

0=<n<c+0(nc), —w<b=ic, (2.2)
where V is a constant independent of ¢. The functions

¢(b) and n(b) are defined by

T(; + i3b) = [7/cosh(37b)]1/2eiv(®), (2.3)
7(b) = @(b) — zb(In3zb] — 1). (2.4)
We note that ¢(b) is real when & is real,a conse-
quence of the identity

T+ 2)T(3 —z) = n/cos(nz). (2.5)
Also, we note that, when b - ®,

n(d) = (1/12b) + 0(1/b2) (2. 6)
a consequence of Stirling's formula.
We need the function

6(e) =0, ife=1 2.7

ey =(1—e <f° (cos2a + € sin2a@)l/2 4
= E[(1— 6)1/2] —eK[1—€)12]— 31 —¢), ife=<1,

m/2 cos2ada n)

(2. 8)
where E and K are the elliptic integrals
7/2
EW):& (1 — %2 sin2a)'/2da , 2.9)
/2
K(k) = fo (1 — B2 sin2a)1/2da. (2.10)
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Finally the function D (¢) is defined as

Dle) = 2[(1 + e™®)/2n] /2 exp[cd(e)]. (2.11)
Our results can be compared with those of Slepian;?2
by using the correspondence

bes—5 9(5) > 95 (®)g1opian: (2 12)

Slepian?

3. RESULTS

All the results given below are asymptotic when
c— 0,

A. Spheroidal Function f, (%)

The function f,(x) has different asymptotic expres-
sions depending on the relative magnitudes of n, x,
and ¢ or, equivalently, of €,x,and ¢. To achieve cla-
rity, we draw up a2 map in the (e, x)—plane and divide
it into various regions. These regions have, in
general, no sharp boundaries, they overlap over large
areas, and they cover the whole plane. In each of
these regions, f,(x) has an asymptotic expression.
On the overlap of two or more regions, the corres-
ponding expressions of f,(x) coincide approximately,
as they should.

As f,(x) is either an even or an odd function, we
need consider only x = 0. Moreover, € = 0. The

(€, x)—plane is divided into seven regions, called 4,
B,C,D*,D ,E,and F. (See Fig.1.) In drawing the
boundaries of the regions, the European rules of the
road have been adopted.3 In other words, starting
from an interior point of a region one may cross at
will a double line and still remain in the region if one
crosses it from the dotted side. Starting from an in-
terior point, one may not cross a double line from the
solid side, nor a single solid line without leaving the
region.

Equivalently, we may define the various regions as
follows. Let V be any positive real constant V 2> 1;

S

; C

E\E Oscillating
[ region
[

Sl< </—

v [
I*T I*v

FIG.1. Map of the regions A,B,C,D*,D",E, and F. Starting from an
internal point of a region one may freely cross a dotted line, one may
also cross a double line and still remain in the region, if one crosses
the dotted line first. Crossing a single line or a double line from the
solid side is not permitted if one does not want to go outside the
region. Note that many regions overlap each other. As V is a num-
ber > 1 and independent of ¢, V < ¢, the boundaries of the regions
are not sharp, except for that between D* and D™,
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in particular, V does not increase with ¢ so that

quantities like 1/V,V/c,V/V ¢, V/Inc, ete. are all < 1.

Then
Region A:
1—x)c=V, (e6—=x2)Vc=V. (3.1)

Let us note that in Eq. (3. 1) the lower limits for

(1 — x)c and (¢ — x2) ¢ may be different constants
V, and V,. The same would be understood in other
similar equations to follow.

Region B:

l—x)c=zV, ((x2—-eVc=V. (3.2)
Region C:

(x —1)c=V. (3.3)
Region D*:

1—x)c=V, (e—x2)=1/V, (3. 4)
Region D™:

1—x)=V, (x2—¢)=1/V. (3. 5)
Region E:

lx — 1] = 1/V. (3.6)
Region F:

x2+e=1/V. 3.7

In each of the regions, f,(x) has the asymptotic ex-
pressions written below. They are compatible with
one another and represent approximate solutions of
Eq. (1. 1).

Region A:
f(x) = D(e)[c2(1 — x2)(e —x2)] 174
x cos[a(x) + n(b) — 7], (3.8)
where
nin@.Ve) (¢ — p2\1/2
alx)=rc fx <1 —y2) dy. (3.9)
Region B:
f(x) = 2D (e) [c2(1 — x2)(x2 — €)]"1/4(cosn(b) e 8()
+ 2 sinn(b)e8k®-28())  (3.10)
where
x y2 — e\1/2
B(x)=rc |~ (1 —y2> dy.‘ (3.11)
Region C:

f(x) — [(2/,7)(1 + e-rrb)]l/Z[CZ(xZ — 1)(x2 — e)]‘1/4
x cos[y(x) — n(b) — 57], (3.12)

where

e (" ¥2 — e\l/2
y(®) = [ <y2 —1) ¥

(3.13)

1747

Regions DT and A:
fx) =D(e)[c2(1 — x2)(e — x2)] V4 [Fma(x)]L/2
)4 /5(a(x))

J-1/3(0(x) O,

where J, ; ;3 are the usual Bessel functions; a(x) is
given by (3. 9) and in D*

x {cos[$7 + n(b

+ cos[zm — n(b)] (3.14)

a(x) = 23/23-1¢1/4(1 — ¢)1/2(e1/2 — x)3/2, (3.15)

Regions D™ and B:
(%) = D(e)[c2(1 — x2)(x2 — €)]-1/4[(2/n)B(x)] /2
x {me~2¢8(e) giny(b )1 /3(B(x))

+ cos[zm — n(b)] Ky 5(B(x))}, (3.16)

where I, 4 and K, ;4 are the usual Bessel functions;
B(x) is given by (3. 11) and in region D-

B(x) ~ 23/23-1¢1/4(1 — €)1/2(x — ¢1/2)3/2, (3.17)
Region E:
f(x) = eicz/29(3 + i(b/2), 1;icz)
=eicz/29(3 — i(b/2),1; — icz), (3.18)

where z = x2 — 1 and ®(a, b; z) is the confluent hyper-
geometric function.
Region F:

f(x) = 7-1/22-3n/2-1¢n/2-1/2 gD (xV3C), (3.19)

where D ,(x) is the Weber—Hermite function.

B. Eigenvalues

The value of y, is implicitly determined by the quan-
tization relation

(n+ Bim=c (OO (5ﬂ—2>”2dy + (b).

0 1—y2 (3. 20)
Once yx, is known and, hence, the values of «,, €, and
b,,the eigenvalue X, is given by

Van(u/2e)*/2 exp[— 2¢b(e)

A, = T / [ ] {3.21)
T'(z(u + 1)) 1+ exp(rd)

These relations are simplified:

(i) If » is finite,n < ¢, then

1—

0sekl, u=2n+1, (3.22)
()= (1 —4m)+ 3¢ lne + e(57 — In2 — %) (3.23)
(see Appendix A),

1— 2, =723n+2g-2¢en+1/2(p 1)1, (3.24)
(ii) If = is large,n ~ c, then

[1—¢€]K 1, (3.25)
j;)min(l,wle) (i—:—f;)l/zdy

*1+1 €1 —cj—1—4m3} (3.26)

(see Appendix B),
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(n+3)37m = ¢+ o(b) — +b In(4c), (3.27)
1—a, =(1+emd)l, (3. 28)

Relations (3. 24), (3. 27), and (3. 28) agree with Slepi-
an's results.
C. Normalization

The functions f, (x) are not normalized since the am-
plitude of f, (x) has been fixed by requiring that

S (1) =1, (3.29)
Let the norm then be defined by
1
N, = [ f2(x)dx. (3. 30)

For N,, we have

N, = [(1 + eﬂb)/nc]ezcé(e)r [% w + 1_)J(u/2e)-u/2(2ﬂ)_1/2

x [2K((1 — |8D1/2) + Inl $b] — 2¢'(8)]. (3.31)
This expression simplifies:
(i) if n» < ¢;then ¢ << 1,and
N, = q1/2273n-2¢n-3/2¢2cp] (3.32)
(i) if » ~ ¢;then|1 —¢| < 1,and
N, =[(1 + e™)/nc][In(4c) — 2¢’(b)]. (3.33)

4. SPHEROIDAL FUNCTIONS: DERIVATION OF
ASYMPTOTIC EXPRESSIONS

A. Classical Approximation in the Regions A, B, C,
D',and D~

By setting

flx) = 122 — 1|-1/26(x), (4.1)
Eq. (1.1) is transformed into

07(x) + p(x)0(x) = 0, (4. 2)
where

wx) = c2(x2 —€)/(x2 — 1) + (x2 — 1)2, (4.3)

One may neglect the second term on the right-hand
side of this equation whenever |x2 — 1|c¢ > 1,i.e.,in
the regions A, B, C,D*,and D", When c is large, p(x)
is large, and the BKW method can be used for Eq.

(4. 2) provided that4

[ (x)1/ 1p(x) 372 < 1 (4.4)
or approximately
Ix(l — )] K ¢]x2 —1]1/2|x2 — ¢]|3/2, (4. 5)

Thus the approximation breaks down in the vicinity of
the points x = 1 and x = Ve (turning point) and also
when ¥ = 0 and ¢ < 1. In other words the BKW
method is valid in the regions A, B, and C. Near the
turning point (i.e.x = V¢ ), connected solutions valid
on both sides of it, i.e., in the regions D* and D, can
be obtained by the prescriptions of Langer.5

In regions A and C, p(x)> 0, while in B, p(x) < 0.
We write
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a(x) = [u(x) ]2 = c[(e —x2)/(1 — x2)]1/2, (4.8)
bx) =[— p(x) 12 = ¢[(x2 — €)/(1 — x2)]1/2 (4. 7)
so that in A
O(x) = G[a(x)] 12 cos[a(x) + n, — 31}, (4.8)
in region B
O(x) = ®[b(x)]"1/2(2 sinn, €8 + cosny "8 (4. 9)
and in region C
e(x) =

Cla(x)]4/2 cos[y(x) + Ne — a7, (4.10)

where a(x), 8(x), and y(x) are given by Eq. (3. 9)
(3.11),and (3. 13).

Langer's prescription gives in region D*

b

O(x' = D[2ra(x)/a(x)]/2[cos(En + n; 5(a(x))

+cosGm — iy ala(x))] (4. 11)
and in D~
O(x) = D[28(x)/nb(x)]1/2[m sinn I ;5(B(x))

+ cos(zm — MK, 5(8(x)]. (4.12)

Equations (4. 11) and (4. 12) coincide approximately
with Egs. (3. 14) and (3. 16) if we choose
(4.13)

D = D(e) 1 = n{ble2cs(a),

b
This becomes clear if one remarks that for |5/ finite,
11— el < 1,6(e)~ s5m(l —€)2 = +m(b2/c2) and thus
exp(c6(e)) = 1, while for 15|>> 1,n(b) = 1/12b2 K 1;
so that for any ¢, 0 < ¢ < 1, we have

sinn = ¢-2¢8(9) giny(b), (4.14)

cos(zm + 1) = cos[5m + n(b)]. (4. 15)
For large values of a(x) and 8(x), we may replace the
Bessel functions by their asymptotic expressions.
Thus in the overlap region of A and D*

(4.16)

O(x) ~ Dla(x)]"1/2 cos[a(x) + n— 47,

while in B and D~

O(x) # :D{b(x) }'1/2{2 sinn eB*) + cosn e B},
(4.17)

Choosing D and 5 as in Eq.(4. 13) and using (4. 14)

and (4. 15), we get Eqgs. (3. 8) and (3. 10). The constants

in Eq. (4.10) as well as the expressions for D (¢), n(5),

and §(e) will be derived later by comparing the solu-

tions in the overlap regions of E and A, E and B, and
E and C.

B. Region E
In E, x — 1 is small. So, by introducing the notation

f(x) =f(2), (4.18)

z=x2-—1,

Eq. (1. 1) can be written as

(1+z)zgij:+(l+§z)3—7+§(2b + cz)f = 0. (4.19)
z 2
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For !z]| < 1, the solution of

dsz de
z —+ — (20 + cz =0 4.20)
dz? dz 4 ( )f (
is approximately the same as f(z). If we set
E=icz, [gplz)=eicz/2g(8), (4.21)
Eq. (4. 20) takes the form
lg 1.
E 2By (1 tiyg=o. 4.22
qz2 (1-29) a (— zib)g (4.22)

The solution of (4. 22) which is regular at z = 0 is the
confluent hypergeometric function®

(&) = (const)d(z + i b/2, 1; ). (4.23)
The constant is fixed by the condition
f() =70) = £ (0) = g(0) = 1, (4.29)
so that finally
f(x) = @) = eic2/28(% + ib/2,1;ica), (4.25)

i.e.,Eq. (3.18).

To connect the function (4. 25) with the approximate
solutions of Eq. (1. 1) valid in the regions A,B,and C,
we need an asymptotic expression of f z(z) valid for
V/c < |z| < 1/V and any value of . We show in
Appendix C that for |cz| > land cz + b> 0,

fe@) = 2 exp[— 3mbe(z)] (cosh(z7b))1/2(mcz)1/2

X cos[3cz — 5me(z) — 3b Inlcz| — @(b)], (4.26)
where

elz) = sgn(z). (4.27)

On the other hand, in the interval V/c < |z| < 1/V,
Eq. (4. 20) can be solved by the BKW method.

Setting

fp@) = 1211720 (z) (4. 28)
in Eq. (4. 20), we get

0 (2) + pglz)0,() = 0 (4. 29)
with

uglz) = L[c2 + @bc/z) + z-2]. (4. 30)

For |czl > 1, pg(z)>> 1 and the term 22 may be
neglected. The BKW solution is

[p(2) = 271/20,(2) ~ [zag(2)]1/2 cos[ay(z) + ],

(4.31)
forz> 0,z + 8> 0;and
fE (z2) = (— Z)‘l/ng(Z)
~ [lzlay(2)] 1/2 cos[az{z) + ng] (4.32)

for z < 0,z + 8 < 0. The functions az(z) and a}(z)
used above are defined by
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ag(z) = sc[(z + B)/z]1/2, (4. 33)
(2) 25_ fmzax(O.—B) <#>1/2 at
=zcilz(z + B2 + B Infz1/2 + (z + p)1/2]
— 28 Inlgl} (4.34)
and
0, (2) :% fzmin(o,—e) <£4t._3> Uzdt
= c{lz(z + B)[1/2 — B In[(— 2)1/2
+ (=2 —p)L/2] + 38 In|Bl}. (4.35)
For |z| > |Bl, Egs. (4. 34) and (4. 35) give
aiz) ~ +{}cz + $b Inlcz| — $b(Inl3b6] — 1)}, (4.36)

Comparing Eq. (4. 26) with (4. 31), (4. 32), and (4. 36) we
get the phases 1 and the proportionality constant.
Thus (4. 31) and (4. 32) may be written as

ot = 2L5) e gy

x cos(ay(z) —n(b) — 5m) (4.37)
forz> 0,z + > 0 and
]?E (2) = 2(1 -;ﬂe”b> 1/2[622(2 + B)]-1/4

x cos[ap(z) + n(d) — 17) (4.38)

for z < 0,z + p< 0.

Replacing z by x2 — 1 in the above equations, we
obtain

fo(x) = 2(__1@_”’) /Z[CZ(xZ —1)(x2 — )]/
x cos(ay(x) — n(b) — i7) (4. 39)
when x > 1,x2> ¢, and
Je(x) = 2<1 +2neﬂb> 1/2[c2(1 — x2)(e — x2)]"1/4
x cos(ap(x) + n(b) — 3m), (4. 40)

when x < 1,x2 < €. The functions ajz(x) from Egs.
(4.34) and (4 35) can now be written as

. _ x y2 —e\1l/2
ap(x) = c fmax(l,\/g) <y2 _ 1> ydy (4. 41)
and
. min(,ve) 3 1/2
ap{x)=c fx <1 ) ) ydy. (4. 42)

To get an asymptotic expression for f(x) when
Ve<x <1, 1— €< V/c,one may use the connecting
formulas of Langer4 for Egs. (4. 28) and (4. 29) near
the turning point x = ve. We get for ve < x < 1,

fp (%) = [ + emd)/2r]1/2[c2(1 — x2)(x2 — €)]"1/4

x {2 sinn(b) exp[B(x)] + cosn(b) exp[— Bg(x)]},
(4. 43)
where
By(x) = ¢ f; <31)2__y:>1/2ydy. (4. 44)
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Thus in the overlap regions of E with A, B,and C,

J& (x) is given by the approximate expressions (4. 40),
(4. 43), and (4. 39), and we must show that they are
nearly equal to the values of f(x) in A, B,and C given,
respectively, by Eqgs. (3. 8), (3. 10), and (3. 12).

Thus, comparing Eqs. (4. 40) and (4. 41) with Eqgs. (3. 9)
and (3. 13), we see immediately that for |x — 1] < 1,

ap(x) = y(x), ap(x) =~ a(x). (4. 45)

Thus, in the overlap region of E and C, Eq. (4. 39) coin-
cides approximately with Eq. (3. 12).

Now, we remark that in the overlap region of E and A,
we have |1 — ¢| < V/c, 6(e) =~ 3—1511(1 — €)2 [see
Eq.(A3) in Appendix A}, consequently c6{¢) = 0

and, therefore,

De) = (2 /m1/2(1 + emb)1/2, (4. 46)

Thus, in this region, Eq. (4. 40) coincides approxima-
tely with Eq. (3. 8).

In the overlap region of E and B the difference g(x) —
Bg(x) must almost be a constant, We write (4. 43) as

Fxy=[1+em®)/2r]1/2[c2(1 — x2)(x2 — €)]1/4
x {2 sinn(b) exp[B(x) — c5(€)]

+ cosn(bd) exp[— B(x) + cb(e)]} (4. 47)

where 6(¢) is defined by

cb(€) = B(1) — (1) = ¢ [ <%2~—:y_—§>1/2 (1 — 9y,
(4. 48)

Making the transformation y2 = cos2a + € sin2a, we
get

n/
ser=a-o ([

2
cos a(?a _ 11_) (4. 49)
(cos2a + € sin2a)1/2 4

i.e., Eq. (2. 8),for € = 1. On the other hand, we see
that Eq. (4. 47) coincides with Eq. (3. 10).

Thus, concerning regions A,B,C,D",D",and E we
have established all the expressions f, (x) given in
Sec. 3A, by showing that in each region those expres-
sions are approximate solutions of Eq. (1.1) and that
whenever two regions overlap, the corresponding ex-
pressions coincide approximately in the common do-
main.

C. Region F

For small values of ¢, the classical approximation
breaks down for x < 1, This case has been well
studied,1-2 and we will not repeat the discussion here.
The asymptotic solution is
fr (%) = D, (xV2¢), (4.50)
where m, the number of zeros of the Weber-Hermite
function? D, , is related to u by
u=2m+ 1. (4.51)
To find the constant ¥ one may compare (4. 50) with

(3. 10) in the overlap region of B and F. Inserting the
asymptotic expression of D,, for xv2c > 1, we have
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fr (%)~ F(2cx2)m/2g-cx2/2 (4. 52)
And from Eq. (3. 10) for V/c < x < 1/V,

f(x) = 2D (e)(cx)1/2 exp[— B(x)], (4.53)
where

x -

b =c [ <31,2_ yz>1/z "

~ 3cx2 — zuIn(@x) + sulln(u/c) — 1]. (4. 54)
For 0 =< € € 1 (see Appendix A),
ecdle) x o1/ (c-u) 9-up-u/d yu/d gc-u/a, (4. 55)

Equation (2. 11) gives then D (¢).

Substituting these asymptotic values in Eq. (4. 53) we
find

f(x) = (nc)‘l/zz_u/Z"l/z ecxu/2—1/2 e—(:xz/z’ (4' 56)

and comparing with Eq. (4. 52) we get (since u = 2m
+1)

b

F = (2/m)1/2(8¢) (m*1/2 gc, (4. 57)
In the next section we shall prove that » = #, where »n
is the number of zeros of f,(x) in the interval — 1 =
x = 1. This fact together with Eqs. (4. 52) and (4. 57)
lead to Eq. (3. 19).

5. RELATION BETWEEN u AND »

We want to derive a relation between u, the eigen-
value of Eq. (1. 1), and #, the number of zeros of f{x)
in the range — 1 = x =< 1. Let us remark that f, (x) is
even or odd according as # is even or odd,

fo (%) = (=11, (x).

Also it never vanishes in the region B; this is clear
from Eq. (3. 10) and from the knowledge that for b > 0,
0 < n(b)< im (see Appendix D).

For e < V/e¢, x = 0, f,(x) is approximately propor-
tional to D,,(xv2c). Thus #» = m and from Eq. (4. 53)

(5.1)

u=2n+1. (5. 2)
For € > V/c,a relation between u and # is obtained by
remarking that f, (x) must be symmetric (antisymme-
tric) with respect to the origin if » is even (odd). As
the function f(x) given by Eq. (3. 8) must be consistent
with this requirement, we may write
af0) + n(b) — i7m = @ + 2v)3m. (5. 3)
Moreover, we remark that, for € < 1, the quantity
[a(x) + n(b) — 7] can be used to count the number of
zeros belonging to the interval (x, V€ ) contained in
region A. As |n(b) — 37| < im, a(e) =0 and since
region B does not contain any zero, this means that v
in Eq. (5. 3) must vanish. Thus, the relation between u
and % is

inm = a(0) + (b)) — 37

in(1,v€) — y2\1/2
_ . fomln € (f___y> dy + n(d) — iﬂ, (5. 4)

1—y2
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i.e., Eq. (3. 20).

When € < 1, 1(d) =~ 0 and Eq. (5. 4) reduces to Eq.
(5. 2). Therefore, Eq. (5. 4) is valid for all values of
€, 0=e<1+V/c.

6. NORMALIZATION

The norm of f, (x) is defined by

N = [ f3(xdx.

This quantity is evaluated in a different way in the
regions € < 1/V, V/c<e<1—V/c,and 1 —-V/c< e
<1+ V/e.

(@) For small values of (e < 1/V), the main contri-

(6.1)

bution to N comes from region F. Thus, as (6.2)
+00
[ DX)dX = (2m)t/2nl. (6. 3)
Equation (3. 19) gives immediately the result
N = 77172 9-@n+2) ¢-n~3/2 g2¢ | (6. 4)

or in terms of u(u = 27 + 1 for these values of ¢):

N =a1/29-Gu D2 cu/zle2e(by — $)1. (6.5)
(b) In the intermediate range (V/c< e<1-V/c),
the main contribution to N comes from the integra-
tion of f,(x) in the oscillating region A where f,(x)
is given by Eq. (3. 8). Since the variations of a(x) are
large the factor cos2[a(x) + n(b) — 57] can be re-
placed by its mean value, i.e., 3. Thus, we may write

N = D2(e)c? foﬁ [(1 — x2)(c — x2)]"1/2dx

/2
=D2(e)ct foﬂ [1 — e sin2a]"1/2da

= D2(e)c KWV E). (6.6)
This appears as a rather crude approximation;in par-
ticular, it seems that the regions (in x) around the
turning point (x = v'¢) should give important addition-
al corrections. However,a calculation shows that in
first approximation this contribution vanishes.8 Thus,
the previous result turns out to be more exact than it
may a priori look.

{c) When € is of the order of one, |e —1|< V/c,
important contributions to N come from the vicinity
of the point x = 1. Choosing a value g such that

u = ¢1/20(1), we may write

with

@-pn/z 1
Ny=2 fo f2(x)dx, N, =2 f(l_“)l/z F2(x)dx

6.7)
and calculate separately each integral.

The integral N, corresponds to an integration of f2(x)
in region A. The calculation is similar to that of N
in the preceding section:

@-p)/2
N, = D2(e)c? fo [(1 — x2)(e —x2)]1/2dx.
(6. 8)
Since p > |B|, we may replace € by 1,then 5(¢) = 1,
Eqg. (2. 11) gives D {€), and we get the final expression
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(6.9)

1+ ebm
le—‘( TC ) 1n<%).

The integral N, corresponds to the integration of
f2(x) in region E [see Eq. (3. 18) and note that z =
x2—1

Ny = focu ‘d)(% +3.22,1; ——icz> ‘2dz.

Here cp>> 1,but the integral diverges when cy — ©,

(6.10)

The calculation of N, requires more delicate manipu-
lations. One studies the asymptotic behavior, when
o — 0, of the classical formula®

0 1 b . . 1 4 . .
fo e02¢<7+-§,1, —zz><1><§~7,1,zz>dz
= eb1/2(1 + jo)1/2-ib/2(1 — o) 1/2+ib/2

x F<l+@,l—@;1;——1—>. (6.11)
2 2°2 2 '1+o2

Using an integral representation!0 of the function
F(a,a —1;1; /(1 + 02)) for a = 3 + ib/2, the final
result is

N, = [(1 + e?")/mc][In(cp) — 2¢'(D)]. (6.12)

From Egs. (6. 9) and (6. 12), we deduce the value of N
and the arbitrary cutoff p disappears as expected.
Therefore, using Eq. (2. 4), we may write

N =Ny + N, =[(1+ e?b)/ac][In(4c) — 2¢’(b)]. (6.13)

Thus in cases (a)-(c), the norm N is, respectively,
given by Eq. (6. 5), (6. 6), and (6. 13). However, these
three different formulas can be replaced by a unique
expression [which coincides with Eq. (3. 31)], namely
N = c1D2(e)(3u— 3)! [w/2e)*/2/V21]

x [KW1—1B]) + 3 Inl3bl — ¢'(8)] (6.14)

which is valid everywhere (e < 1 + V/c).
As will now be shown

(a) for small values of € (e < V/c) (see definition
2.11)

2 ~ (c-u)n/2+2c6(e)
D2(e) > (2/m)elemIn/zr2edle) (6.15)
using Eq. (A6), we get
D2(e) = 7 le2c-u/29-2u+lu/2 yul/2 (6.186)

On the other hand, according to Egs. (2. 4) and (2. 7)
®>1),

@'(b)—loglzb|=~ 0. (6.17)
And, we have also
K(W1—18)) = K(We) = 3. (6.18)

Bringing all these values in Eq. (6. 14), we find Eq.
(6. 5).

(b) In the intermediate range (V/c< e<1—V/¢),
the values of b and u are both large; Eq. (6. 17) re-
mains valid and we have

1

(zu—3)! = (2m)1/2(u/2e)%/2, (6.19)
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Thus we see that in this case, Eqgs. (6. 14) and (6. 6)
coincide.

(c) When € =~ 1(e < 1), u is also large, Eq. (6. 19) re-
mains valid, 8 is small and positive, and we have

D2(e) = 2(1 + ebm)/m, (6. 20)
K[(l—ﬁ)l/z]: fOW/Z (sin2a + B cos2a)/2da

~ log4 — 3 logB

=—3 In(zb) + 3 In(4c). (6. 21)

Bringing these values in Eq. (6. 14), we find Eq. (6. 13).
Thus the validity of Eq. (6. 14) is established in every
case.

7. EIGENVALUES 1,

As ¢ — o, the kernel in Eq. (1. 4) tends to a delta
function, and for any fixed », A, = 1. To know how
1 — 2, decreases, we use the differential equationll

1dx, 2 1

_ i 2 2

= e == 1a12/f r2tnax. (.1)
Setting

1

N, = [ F2(x)dx (7.2)
and using our normalization convention

(1) =1, (7.3)
we can write Eq. (7.1) as

1dx, 21

@ TN, (7. 4)
Our proof of Eq. (3. 21),
1—x, = (@m)1/2(u/2e)*/2[T(Gw + 1)1

x exp]— 2¢b(e)] (1 + enb)1 (7. 5)

consists in verifying that
(i) », > lasc— o, and
(ii) A, satisfies the differential equation (7. 4).

When 7 is fixed and ¢ — ©, we see from Eq. (3. 20)
that € —» 0, and hence b - ©, 1n(b) > 0,and u = 2n
+ 1.

From Eqgs. (A6) and (2. 1),

exp[— 2¢6(e)] (1 + e™?) 1 ~ e 2¢(c/u)u/2 g~u/222u

- 0, (7.6)

as ¢ > «0

and, therefore, A, — 1.

To see that A, given by (7. 5) satisfies (7. 4), we divide
our discussion into two parts, 0 < e =1 — ¢1/2 and
1 —¢|=cl/2,

First of all let us remark that we may regard the
factor

Fu) = 2n)1/2(u/2e)/2[T(3(u + 1)) ! (7.7
as a constant, since either u« is finite, u =2#» + 1, and
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the said factor is a constant, or « is large and the
said factor is unity.

i) e<1—cl/z,
In this case, b > zc¢1/2>> 1, 5(b) ~ 0, and Eq. (7. 5)
gives

1— X, R Flu)e-2cs(e)-nb, (7.8)

As , = 1, we get
1 dx,
X, dc

n

~ F(u)e 2céle-mby [G(e) + %(1 —€)
+ (s T\ de
(reo-g)eg| a9
Now, we have

5(e) + 37(1 —¢)

-2 /1 _ ¢ _ y2\1/2
- fo ( 2y ) 4y
1—y

=E[(1 — e)12] — eK[(1 — €)1/2], (7.10)
8'(e) — 37
_ f(l—e)l/2 dy
T [ —e—y2)(1 -y
:_fi____(“z“ €) (7.11)

and from Eq. (3. 20), neglecting 7(b),

_ ¢ de (Ve dy Ve fe — y2\1/2
T2dc [le—yma— s o (1—;'2) @
_ _2"_3%1{(&) +EWE) — (1 — KWe). (7.12)
So that
6(e) + Z— (1—¢)+ <6’(e) —Z—>c%
=E[(1 — €)1/2] — eK[(1 — €)1/2]
oy [EGVE) = (1 — k(W e))
+ K[(l €) ] K(\[?)
= ;MKW e)T, (7.13)

where in the last step we have used Legendre's rela-
tionl2

E[(1 — e)1/2]K(Ve) + E(Ve)K[(1 — €)1/2]

—K[(1—e)12]K(We) =57, (7.14)
From Egs. (7. 9) and (7. 13) we get
d
2_>C\n % = F(u)e2¢8-nleq(K(Ve)) L. (7.15)

This is just the value of 1/N, given by Eq. (6. 20) for
large values of b. [See Egs. (2. 4) and (2. 7).] Equation
(7. 4) is, therefore, valid in this region:

() le—1] < ¢1/2

From Eq. (A3), 8(¢) = 557(1 — €)2, ¢b(e) < 1,and Eq.
(7. 5) becomes

1—a, ~(1+em)1, (7.16)
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Hence
1 dx, T db

A, dc  1+emdc

Also from Eq. (3. 27)

(7.17)

(n + 3371 = c + @(b) — 3b In(4c), (7.18)

we get by differentiation

db%

¢ ~ [z In(4c) — ¢’ (B)] . (7.19)

In this region, according to Eq. (3. 33),
N, = [ + em)/ac][In(4c) — 2¢'(b)]. {7.20)

Equations (7. 17), (7. 19),and (7. 20) are equivalent to
Eq. (7. 4).

APPENDIX A: PROPERTIES OF 6(¢)

The function 6(¢) is defined as follows:

fore=1 (e} =0

for0=e=<1

/2 in2
Sle)=(—e) <f0 [sinzalerneacizza]l/z —§_> (A1)
and both formulas give §(1) = 0: (A2)
(a) For 0<1—¢e< 1, we have
6{e) =~ (m/32) (1 — €)2. (A3)
This result is established by remarking that
@ o)., s
<_d _§Le)_> - (A5)
de (1—¢€)) .4 32
o) Foro=ex1
S5(e)= (1 —4m) + felne + e(3m —In2 — 2). (A8)

The first term is an immediate consequence of Eq.
(Al):

6(0)=1—in (A7)
On the other hand, for small values of ¢,

6'(e) > — (1 — im) — 31(e), (AB)
where

/2 in2 2

ta=4 [Sin::n+ae cc(;ssz:z]sfz da (49)
For ¢ < 1 it is easy to show that

I{e) = 2In2 — 2 — 3 Ine. (A10)
Substituting this value in Eq. (A9) we find

6'(€) =4 Ine + 7 — In2, (A11)

which by integration gives Eq. (A6).
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APPENDIX B: ASYMPTOTIC PROPERTIES OF AN
INTEGRAL

Let us show that the integral

() = foMm(l'm <i :3;2)1/2 dy (B1)
can be expanded,near € = 1,as
Je)=1+ ;1 —¢€)[Injl —e|—1—41n2]. (B2)
We see immediately, that

J(1) =1, (B3)

On the other hand, we have

Min(1,v¢€)

T =5 I, (A —y2) (e —y2)] 120y (BY)

fﬂ/Z [le — 11 + sin2a]12da, |e—1|<K1;
0 (B5)

we may write (0 <0< 1,n2/le — 1> 1)

~ 1
~2

/2
J'(e) = 3 fon[|e—1|+a2]‘1/2da+é fnﬂ [sina]tda
=3 Infn+ (2 + |e — 1))1/2]
—zlnle — 1| — § Intg(ln)
In2 — Inle — 1.

R

(B6)

Equation (B2) is a direct consequence of Eqs. (B3)
and (B7).

APPENDIX C: ASYMPTOTIC VALUE OF [, (z)
The function f (2) is defined by

fr(2) = exp(—icz/2)&(5 + 3ib, 1;icz). (c1)

We want to show that for [z|> 1

+ia>
[
p=J
2
[~
Q
© double poles
[ ] [ e [ ]
] 1 2 3
Simple poles
. [ ®
-a-2 -a-1 -a
S —plane
_im

FIG. 2. Contour of integration in the complex plane of S
for the calculation of ¥(a, 1;x).
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Fz(2) = 2 exp[— 3bne(z)][cosh(mb/2)[1/2(mcz)1/2

X cos[zcz — $me(z) + b Injcz| — @(b)],  (C2)

where ¢(b) is defined in Sec. 2 and €(z) = sgn(z).

The function ®(a, c; x) can be expressed in terms of
Y(a, c;x) and Y(a, c; — x) asl3

¥, 62) = 1) (p5gy V1@, 3

giemla—c)
+W e*y(c—a,c; —x)] (C3)
with € = sgn(Imy)
Thus, we may write (C1) as follows:

. _br exp[i[3 cz — 371e(2)]}
fE‘Z)‘e"p< 2 6“»( (— 3+ %ib)

X Y(z — 5ib,1; —icz) + c.c.) . (c4)

The Y(a, 1;x) can be defined by14

via, 1;x _—f F(S+a)<r((a)s)> x5dS. (C5)

The contour € goes from — i to + i and passes
between the poles of I'(S + a) and I'(— S) (see Fig. 2).
When |x| = + ©, the asymptotic value is obtained by
displacing the contour to the left; thus y/(a, 1;x) is
equivalent to the contribution of the first pole which
is met by the contour (i.e.,S = — a)

Yia, 1;x) =~ x7¢,
Thus
= |cz|'(%'%ib)eM(z)(b+i)/4,

(C6)

icz) > (— icz)‘(%“%“’)

€(z) = sgn(z). (CT)

In Eq. (C4) let us replace ¥(z + (ib/2), zcz) by the
preceding expression, and let us express [— 3 —
(tb/2)]! in terms of ¢(b) by using Eq. (2. 4). We
obtain the result (C2).

APPENDIX D: PROOF THAT 0 < n(b) < 47
FOR b > 0

The phase shift n(b) is defined by

n(b) = @(b) — 3b[In|3b| — 1], (D1)
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where ¢(b) is the phase of I'(z + 3ib) [see Eq. (2. 4)].
According to a well-known formulal5:

¢ -
diz Inr(z) = [~ <3t— -1 E :_t> dt (D2)
which can be transformed into
%Cmr(% + x) =lnx + [” <:_— le—_t/:_t>e-xtdt. (D3)
By integration from 0 to x, we obtain
InT( + x)
= xnx — 1)+ [ (tl _ lej/:_t) (1 _te'”> dt, (D4
Im InT'(3 + 3ib)
= 2(1“ 3 - ) K (?1;_ siihu)Sirtltbu du.  (D5)
Thus
1= 7 (- ) S 06)

To find bounds for n(b), we shall use the fact that the
function

_1/1 1
hluw) = ;<; - __sinhu>

is a decreasing function of u. This last property can
be verified by differentiating %(u), reducing to a com-
mon denominator, and expanding the numerator in
powers of u.

(D7)

As h(u) is a positive decreasing function of u, we can
derive from Eq. (D6) the following inequalities:

du 1
and, therefore, the result
0< n(b) < im. (DY)
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The case when there exists a homomorphism ¢ of a group G into Aut(X) of a non-Abelian group K [0 having at
most one image in every coset of Aut(K) with respect to I(K)] is investigated. It is shown that any extension

E € ext (G, K) can be obtained as a generalized semidirect product (GSP): E = (K@ H)/C', where H belongs to
ext (G, C) (the group C being the center of K), the semidirect product of K and H is based on r which equals
oon (n being the homomorphism of H onto G), and C’ is the antidiagonal of C ® C. The GSP is a natural gene-
ralization of the central extensions, it is applicable to most groups in theoretical physics, and it has a suitable
form for the derivation of the irreducible representations of E.

1. INTRODUCTION

A group E is called an extension of a group G by a
group K, and denoted by (i, E, s), if there is an in-
variant subgroup i(K) in E which is isomorphic to K
and if E/i(K) = G.1

Group extensions play an important role in physics
because they enable us to find more complete sym-
metry groups of physical systems when their partial
symmetries are known.

By diagram the extension E for a given g is expres-
sed as follows:

1 1
c Cx(K)
|
1 >SK———>E—"—5GC > 1
7
f lg
1 > I[(K) > Aut(K) <_P_ > A(K) >1
%
| ON A
1 Aut(C) Diagram 1

where C is the center of K, Cg{(K) is the centralizer
of K in E, I(K) and Aut(K) are the groups of all inner
automorphisms and of all automorphisms of K res-
pectively, and A(K) = Aut(K)/I(K). The mappings s
and p are homomorphisms, and the maps % and &
satisfy

soh =1

pok =IA(K)

(e.g.,I; denotes the identity transformation in G).
Besides, # and %2 are normalized (i.e., they take the
unit element into the unit one), and the following
commutation relation is valid:

kog :f°h. (2)

The homomorphism j is due to the restriction of the
domain of each automorphism in K to C.

(1a)
(1b)

As it is known, two extensions (i, E, s) and {i’, E', s’)
of G by K with the same g are equivalent if there
exists an isomorphism p: E — E’ such that

The set of all extensions with the same g we denote
by ext, (G, K).

The problem of finding all inequivalent extensions
was solved in the mathematical literature some time
ago,2 and Michel introduced this theory into theore-
tical physics.1

In the case of a non-Abelian K, one reduces the exten-
sions of G by K to those of G by C.2 It is desirable to
do this in the most practical way. Michel has shown3
that each central extension E (characterized by g be-
ing trivial) can be written in the simple form

E=(K® H)/C, (4)
where H is a certain central extension of G by C and
¢’ ={ly,yVly e C}. (5)

The aim of this paper is to generalize this result of
Michel to nontrivial g, but such that k-g is a homo-
morphism, We are going to show that in this case all
extensions from ext, (G, K) can be written, within
equivalence, in the following way:

E = (KDH)/C', (6)
where 7,H,and C’ are defined below (see Sec. 4).

Expression (6) we call the generalized semidirect
product (GSP). Relation (4) is obviously a special
case of GSP, which therefore might be called the
generalized direct product.

The scope of applicability of GSP as well as its sig-
nificance for physics is discussed in Sec. 5.
2. SOME REMARKS ON EQUIVALENCE

In standard extension theory.4 it is known that an
arbitrary element from ext (G, K) can be written,
within equivalence, as the set of ordered pairs

E ={(e,a)le € K,a € G}, (72)
with the composition law
(a,a)(B,b) = (ak-g[a](B)wl(a,b), ab) (7b)

where kog{a] (cf. Diag.1) is an automorphism in K
which is the image of @ € G, and w(a,b) € K,Va,b € G,
is the normalized factor system. The homomor-
phisms ¢ and s are given by

i(a) = {a,e), (7c)

s(a,a) =a, (7d)

where e is the unit element of G.

pot =14’ (3a)
The necessary and sufficient conditions for E given
S'op=S. (3b) by (7) to be an element of ext, (G, K) are
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kogla)k °g[b(a)) = w(a, b)k oglab](a)w(a, b)2,
wla,b)wlab,c) = koglallw,c)wla,bc)

(8a)
(8b)

Lemma I: Two extensions E and E’ of the form
(7) are equivalent if and only if there exists an iso-
morphism p: E - E’ such that

pla,a) = (@¢playt,a), VYacK, VacG, (9)
where ¢(a) € K and ¢(e) = €, € being the unit element

of K.

Proof: Let E and E’ be equivalent through the
isomorphism yu. It follows from (7c) that,Vo € K,
i) =i'(a) = (a, €),and (32) then gives p(a, e) =
(o, e). In the same way (7d) and (3b) imply (o, a) =
(¢’,a), ¢’ some element of K. Let us denote

e, a) = (pla)?, a),

then ¢ (e) = €. Finally, for the general element of E
one has p(a, a) = p((a, e)(e, a)) = (@, elpla)?,q) =
(agp(a)?,a).

The sufficiency of (9) for (3a), (3b) follows immediate~
ly from its form. QED

¢(a) € K; (10)

Lemma 2: A set of elements from K, {¢(a)la € G},
defines an isomorphism u: E~ E’ via (9) if and only
fve € K, Ya,b € G

koglala) = pla)k -g[a]la)p(a)?, (11a)

w'(a,b) = ¢plak-glal(¢®)wla,b)plab).  (11b)
Proof: Let p be an isomorphism. Then

wa,a)u(B,d) = plak -gla](Blwla,b),ab). (12)

Making use of {9), one obtains

(@p(a)1,a)(Bep(d),b) = (akogla)(Blwla,b)plab )‘1(, ab))
13

lhs = (ad(a)Lk’-glal(B¢(d)w'(a,b),ab). Putting

B¢(p)l =B’ and equating lhs and rhs in (13), one gets

k'ogla)(B')w'(a,b)

= ¢la)k ogla)(B")k -g[a](@ (b)wla, b)p(ab)t.
For B’ = €, (11b) follows immediately. Replacing
(11b) in (14), one finally arrives at (11a).

On the other hand, one can easily see that (11a), (11b)
imply (12). QED

(14)

Corollary I: Two equivalent extensions E and E’
have 2’ = k if and only if ¢(a) € C, Va € G [cf.(9)].

Proof: X k'’ = k,then from (11a) it follows that
f(¢(a)) = I, (see Diag. 1), which means ¢(a) € Cy(K).
Since ¢(a) € K and C,(K) N K = C, one has ¢(a) € C,
Va € G. The sufficiency is obvious from (11a), QED

Corollary 2: Let k' be an arbitrary given normal-
ized mapping which satisfies (1b) and (2). In every
class of equivalent extensions there exists at least
one of the form (7) with this 2’ in the composition law.

Proof: In any class of equivalent extensions there
is one, say E, of the form (7). From the definition of
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the mappings %k and %2’ one concludes that their corres-
ponding images differ by a factor which is an inner
automorphism in K. Therefore, for each a € G there
exists a ¢(a) € K so that (11a) with ¢(e) = € is valid.
Using these ¢ (a), we define w’(a,b) by means of (11b).
The group E’ of the form (7) with 2’ and w’(a, b) in its
composition law is equivalent to E via (9) due to
Lemmas 2 and 1. QED

3. HOMOMORPHISM OF G INTO AUT(K)

From now on we confine ourselves to those extg(G,K)
which contain at least one semidirect product K@ G.
For such an extension,k.g is a homomorphism which
we denote by o, and extg(G,K) we write as ext (G, K).

It is a consequence of Corollary 2 that in every class
of equivalent extensions there is one with o in its
composition law,

Lemma 3: In each extension with £og = ¢ the fac-
tor system satisfies w(a,b) € C, Va,b € G.

Proof: The factor system is usually defined by

h(ah(b) = wla,b)n{ad) (15)
{see Diag.1). We now apply the homomorphism f to
(15): foh[a]foh[b] = flwla,b)) foh[ab]. Since foh =
kog = 0,and 0 is a homomorphism, one has f(w(a,b) =
Iol.e,wla,b) e Cy(K). As by definition w(a,b) € K,
Va,b € G,one has wia,b) € C. QED

Lemma 4: In every extension E € ext,(G, K) there
is a subgroup H containing i(C), which is an extension
of G by C belonging to extjoc(G, C).

Proof: For each E there is an equivalent E' = u(E)
with kog = 0. We define the following subset in E’:

H':{(‘y,a)"yE C,(IEG}. (163.)
The composition law (7b) in it becomes
('}”a)(ﬁyb) - ('}’] oo[a](é)w(a,b),ab), (16b)

because V6 € C: o[a](d) =joo[a](d) (see Diag.1). It is
shown in Lemma 3 that, in £/, w(a,b)c C, Va,b € G,
so that yjeo[a}(d)w(a, b) € C, which makes H' closed to
multiplication. Furthermore, (y,a)? = (w(a™1,a)1
jeofal}(y™1),a™l) € H’, which means that #’ is a sub-
group. Equations (16a),(16b) entail H' € extjw(G,C).
Also the subgroup H = u 1(H’) C E belongs to

ext,..(G,C). QED

joo

Lemma 5: Whenever a homomorphism o: G —
Aut(K) and H defined by (18) are given, there exists E,
an extension of G by K:

E={{a,a)la € K,a € G},
(,a)(B,b) = (ac[a](B)w(a,b),ab),

where w(a,b) is the factor system of H.

(17a)
(17p)

Proof: It is easy to verify that Egs. (8a), (8b) are
satisfied for E,i.e.,that F is an extension. QED

Proposilion 1: Equations (16) and (17) establish a
one-to-one correspondence between the E's given with
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o and the H's having joo;the corresponding E and H
have the same w(a,b). This correspondence pre-
serves equivalence in both directions.

Proof: Since equivalent E and E’ have in our case
the same o, Corollary 1 implies that the set {¢{a)l
a ¢ G}, through which this equivalence is realized [cf.
(9)], is a subset of C. This property of the ¢(a)'s
makes, through Lemmas 1 and 2, the corresponding H
and H' equivalent. It is straightforward to invert this
argument, because {¢ (a)|a € G} are common to E and
its corresponding H [see the definition of ¢(a), Eq.
(10)]. QED

4. GENERALIZED SEMIDIRECT PRODUCT

We assume that a homomorphism ¢: G — Aut(K) is
given, such that ¢ =k-g. Let ({,H,n) be an arbitrary
element from extjoo(G, C) (see Diag.2). Obviously,

7 = 0on is a homomorphism H — Aut(K), and it can
be used to define the semidirect product K@ H.

Lemma 6: The antidiagonal of C ® [(C)
C' ={ly, 1Ny e C} (18)
is an invariant subgroup of K@ H.
Proof: The group K@ H can be written as

K®Hg{(ay(')/7a))|a EK,‘}/EC,GEG}, (lga)

with the composition law

(a, by, @ (B, (6,0)) = (ao[a](B), (yo[a)(d)wla,d), ad)),
(19b)

because of 7[{y,a)] = o[a] and joa[a](5) = o[a](6),
vo e C.

The subset C’ now reads
C' ={ly,y 1, e)ly € Ch. (20)

It follows from (19b) that C’ is a subgroup of K@ H
since o[e] = I, and w(e, e) = €. It is also invariant if,
V5 € C, there exists ay € C such that (o, (1, q))
(6,671, e)) = by, (y2, @) (@, (n, @), for an arbitrary
(¢, (n,a)) € K@OH. 1t is easy to see that such a y is
alal®). QED

Theorem 1I: The factor group
E = (KQH)/C’, (21)

i.e., the GSP, is an extension (i, E, s) of G by K and
belongs to ext (G, K). In (21) the extension ({,H,n) €
ext].w(G, C),7 = gon,and C’ is defined by (18), The
isomorphism ¢ and the homomorphism s are given
by i(e) = (@,1)C’, s{(a,x)C’) = n(x) (see Diag. 2),
where o ¢ K,and 1,x = H.

Proof: We are going to demonstrate the existence
of an isomorphism between E given by (21) and that
defined by (17). This isomorphism immediately im-
plies the statement of the Theorem.

The cosets of C’ in K@ H can be conveniently written
so that E of (21) takes the form

E = {{(ay, y1,a))ly € Clla € K,a € G}. (22)

1757
To show this, let us take an arbitrary element of E

{6, (671, e))(B, 0, a6 € C} ={(B8, (6-1n,a))|6 < C}

[cf.(20) and (21)]. Replacing 6-1n =471, nf = a, we
obtain (22). Clearly, indexing of the classes by («, a)
is unique. Thus a one-to-one correspondence between
(21) and (17) is achieved. It is an isomorphism be-
cause

(ay, (y™1,a) (85, (671,0)) = (ao(a](Bwla,d)n, (n71,ab)),
(23)

where 7 = w(a, b)1o[a](®)y. The last claim of the

Theorem can be seen immediately either from (22)

or from Diagram 2. QED
1 1
Vv
1 > C’ C > 1
[
> K K@ H H
: = 1
Aut(C)
w n
i s 40
1 > K > F G > 1
y
1 Aut(K) 1 Diagram 2

The considered extensions are related to each other
as exhibited on the diagram.

Remark 1: The extensions E and H in (21), when
written in the respective isomorphic forms (17) and
(16), have a common factor system. This is an im-
mediate consequence of (23).

Corollary 3: If,in the GSP (21), H is itself a semi-
direct product of C with G (via the homomorphism
joo),then E is isomorphic to K@G.

Proof: Selecting from each coset in (22) a repre-
sentative of the form (¢, (¢, a)), the resulting set is a
group isomorphic to K@G. QED

Corollary 4: When K = C ® D, and D is a subgroup
invariant under ofa], Va € G, then for every extension
H expression {21) takes on the simplified form

E=DDH. (24)

Proof: In this case the elements of K are uniquely
written as @ =yx, y € C,x € D. Hence the coset
representatives can be chosen in the form (x, (y, a)).
The set of representatives is a group isomorphic to
D@®H. QED

Corollary 5: In case when there exists a subgroup
C, of C which is invariant under ofa], Va € G, and
when for some extension H one has w(a,b) € Cos
Va,b = G, then the corresponding E becomes

E= (K@H,)/Ch, (25)
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where H, is a subgroup of H which is, in its turn, the
extension of G by C, withjoo and the same w(a, b)
and where C{ ={(x,/(a1))|x € C}.

Proof: Analogous to that of Theorem 1 restricting
the elements of C to C,. QED

It should be noticed that expression (25) may simplify
(21) considerably (see Example 1 below).

Theovem 2: Let us single out from each class of
equivalent extensions in ext, (G, C) one representa-
tive H; in an arbitrary fashion. For each of these we
construct the corresponding E; according to (21).
These E; turn out to be representatives one from
every class of equivalent extensions in ext (G, K).

Proof: The groups H and E in (21) have their
equivalents H' and E’ of the form (16) and (17) res-
pectively. The latter have a common factor system
(cf. Remark 1), so that Proposition 1 is valid for
them. Hence, nonequivalence of Hz.,Hj € ext].w(G,C)
implies nonequivalence of the corresponding E, E] S
ext (G, K). The fact that no class of ext (G, K) is
left out in this way can be established by an ab con-
trario argument from Proposition 1. QED

5. DISCUSSION

(A) Our extension procedure (GSP) is applicable to
most of the groups used in theoretical physics. For
instance, here belong all compact Lie groups, all
semisimple Lie groups, the Poincaré group, etc.
Namely, a sufficient condition for the existence of a
homomorphism ¢, which is kog, is the splitting of
Aut(K):

1- I(K) — Aut(K) 2 A(K) — 1,

and G may be arbitrary. All of the mentioned groups
satisfy this condition,3

(B) The problem of finding all irreducible represen-
tations (IR's) of the extension E obtained as a GSP
[cf. (21)] can be solved in three steps: (1) One finds
all IR's of H. This task is facilitated by the fact that
H is an extension of G by an Abelian group, and all
the IR's of the latter are one-dimensional. (2) One
determines all IR's of the semidirect product
K@®H.56 (3) One finally selects out the subset of all
those IR's of K@) H whose kernels contain C’. The
whole procedure is illustrated in Example 2,

(C) The group E given as a generalized direct product
(4) (a central extension) can be viewed as the product
of two subgroups both of which are invariant, the first
being isomorphic to K and the second the centralizer
of the first in £ and isomorphic to H. Their inter-
section is the center of the first subgroup.

If £ is a GSP, it can be regarded as the product of its
invariant subgroup i(K), isomorphic to K, and a second
subgroup we t{H), which is isomorphic to H (see Diag.
2). The two subgroups intersect in the center of the
first 2(C). In general,wo t(H) need be neither the cen-
tralizer nor invariant in E,

(D) Since in the case of a central extension the ele-
ments of i(K) and those of w.{H) commute, the quan-
tum numbers of the IR's of K and H are compatible.
In the more general case of a GSP not all elements
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of wot(H) commute with all elements of i(K), which
means that the corresponding quantum numbers are
incompatible. For instance, in example (2) below,
where the group {1,C} is extended by SU(6)/Z, the
quantum number of charge conjugation € is incom-
patible with those of this group of internal symme-
tries. In this particular case this fact has been known
for some time, 7 viz., for the groups SU({n), n > 2,

G -parity cannot be defined.

(E) If the reader is familiar with the application of
cohomology theory in group extensions,2 he may
wonder about the relation between the Eilenberg-
MacLane theory and the GSP. If in extg(G,K) there
exists a semidirect product with ¢ = kog, and it is
multiplied with all extensions from ext].oo(G, C)in
the fashion given in Ref, 2, then an equivalence can be
established between the extensions obtained in this
way and those given as GSP's,

6. EXAMPLES

(1) As an ilhlstration of Corollary 5, we may take

G = ZZ(C), C being the charge conjugation operator,
and K = U(1) @ SU(3)/Z ., (the eightfold way model of
Gell-Mann and Ne'eman). The center of K is isomor-
phic to U(1), and the automorphism o[@] is the com-_
plex conjugation of the elements of K. Since H2(Z,(C),
U(1)) = Z,, there are only two inequivalent extensions
E, and E,. The factor systems of these two exten-
sions have to satisfy (8b), which in this case reduces
to w(C,C) = w*(C, ), implying w(C,C) = +1 (three-
dimensional unity)., Evidently in the nontrivial case
of E, the factor system belongs to a subgroup of the
center,C, = {1, -1}, which is invariant under o[C].
The extension H, in (25) is isomorphic to Z,. There-
fore the simplest form of E, is

E, ={[U(1) ® SUB)/Z3]® Z,}/Cys (26)

where 7 = 0 on, n being the homomorphism Z, -
Z,(C).
(2) To illustrate the method of constructing IR's of a
GSP [see Discussion (B)], we consider G = Z,(C) =
{e,C} and K = SU(B)/Z4,C and ¢[C] as in Example 1.
The center of K is now isomorphic to Z,, so that there
are no more than two inequivalent extensions of the
center: Hy =Z, ® Z,(C) and H, = Z,. According to
(21), the GSP's are: E; = [SU(6)/Z3]© Z,(C) (cf.
Corollary 3), and
E, =B/Z;, where B =[SU(6)/Z;|®Z,. (27)
As a simple example of an IR for E,, let us choose
the IR D(35) of SU(6)/Z 5, which is used to classify
mesons. First we find the IR's of B. Since the little
group of DG5) is the whole B, and Z, is cyclic, the
IR's of B are5.6

A®(y) ® U(y)D BN a), (28)

where y runs through Z,, A® are the IR's of Z, =
{1,x,x2,x3},and U is a 35-dimensional representation
of Z,, so that

DG (a*) = Ux)DB)a)U1(x). (29)

Since the kernel of D33%) is just Z,, Sec.5(B) implies
that those and only those of the IR's given by (28) are
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also IR's of E, for which Z, is contained in the ker-
nels of both A%i) and U. In this way from the four IR's
of A® only two remain: the identity representation
A and the nontrivial real one A®. Due tooon[x2](a)
= gle](e) = @ and U(x2) = e**U2(x) implied by (29),

it is possible to select U = U, so that Uy{x?) = 1,i.e,,
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the kernel of U, is Z,. Thus, all the IR's of E, asso-
ciated with the IR D®5) are

A®(2)® Uy(2)DBSa), k=1,2, (30)

where z = n(y), i.e.,z =e, o) [» being the homomor-
phism: Z, = Z,(C)].
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In the general theory of optical coherence, the following problem discussed in the present paper, arises: to
determine the statistical properties of a field represented by an analytic signal from the knowledge of the
statistical properties of the corresponding real field. It is shown by the use of the characteristic functionals
that in order to determine the joint probability distributions of the complex field at N space-time points, the
knowledge of the complete statistical description of the real field is required; on the other hand, the moments
of the complex field up to that order can be determined from the knowledge of the moments of the real field
up to the same order. The results are illustrated by explicit calculations relating to the Gaussian random
process, which, as is well known, characterizes the fluctuations of thermal light. A converse of a well-known
theorem of Kac and Siegert relating to a Gaussian random process is derived as an immediate consequence

of our analysis.

1. INTRODUCTION AND FORMULATION OF THE
PROBLEM

The classical theory of optical coherence of statisti-
cal fields, whether the field is stationary or nonsta-
tionary, whether it is generated by a thermal source
or some other source is today well formulatedl.2

and is being applied to a wider and wider class of
optical problems. There is, however, one problem in
the foundation of the theory, which has so far not been
treated. In this paper we will formulate this problem
and present a solution of it for a wide class of non-
stationary processes.

Let us denote by X(r, {) a real field variable, repre-
senting the optical field at a point r, at time {. For
the sake of simplicity we consider X to be a scalar,
e.g.,a Cartesian component of the electric field.
(Generalization to a vector field is straightforward.)
For any realistic field, X(r,¢) will fluctuate in the
course of time in a manner that is not strictly pre-
dictable. It is,therefore, appropriate to regard X as
a member of an ensemble of different realizations of
the field. The statistical properties of the field may
then be specified by a sequence of probability densi-
ties

p](-X) (Xl;Rl)y p2(X)(X1’X2;R1,R2)7

PO Xy, X, X53R,Ry,R5), ..., (1.1)

where R; = r;, tj denotes a typical space-time point,
To illustrate the meaning of these probability densi-
ties let us consider p4 %): The quantity p &) (X, X,;
R, ,R,)dX dX, denotes the probability that at the
space—time points R, and R,, X will take on values
that are in the intervals X,,X; + dX, and X, and
X, + dX,, respectively.

It is customary and useful to introduce a complex
representation of the field.3 This representation,
originally due to Gabor,4 arises naturally in the
theory of photo-electric detection of light fluctuations.
The associated complex field also corresponds to the
eigenvalues of an operator used in the theory of quan-
tized fields, to represent the annihilation of a photon2
at a space—time point R. Some minimal properties

of this complex representation have been established
by Mandel, 5

To introduce this complex representation, we assume,
that for each r, the typical realization X(r, ) is
square integrable, with respect to time® and, hence,
may be represented as a Fourier integral
X(r,t) = f_o:o &(r,v) exp(— 2mivt)dv. (1.2)
Since X(r, ) is real, £(r,— v) = £*(r, v), where the
asterisk denotes the complex conjugate. Because of
this relation it is clear that the negative frequency
components of each realization of the field do not
contain any information that is not contained in the
positive ones; hence, in place of the real function
X(r,t) we may employ the complex function
Z(r,t) =2 fooo &(r, v) exp(— 2mive) dv, (L.3)
known as the complex analytic signal, associated
with X(r, ). This terminology arises from the fact
that by a well-known theorem? Z (r, ¢) considered as
a function of a complex £, is regular and analytic in
the lower half of the complex ¢ plane. It is trivial
to show that the real part of Z(r,?) is precisely the
function X(r, ) and, on using the analytic property of
Z that we just mentioned, one may readily show that
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also IR's of E, for which Z, is contained in the ker-
nels of both A%i) and U. In this way from the four IR's
of A® only two remain: the identity representation
A and the nontrivial real one A®. Due tooon[x2](a)
= gle](e) = @ and U(x2) = e**U2(x) implied by (29),

it is possible to select U = U, so that Uy{x?) = 1,i.e,,
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the kernel of U, is Z,. Thus, all the IR's of E, asso-
ciated with the IR D®5) are

A®(2)® Uy(2)DBSa), k=1,2, (30)

where z = n(y), i.e.,z =e, o) [» being the homomor-
phism: Z, = Z,(C)].
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In the general theory of optical coherence, the following problem discussed in the present paper, arises: to
determine the statistical properties of a field represented by an analytic signal from the knowledge of the
statistical properties of the corresponding real field. It is shown by the use of the characteristic functionals
that in order to determine the joint probability distributions of the complex field at N space-time points, the
knowledge of the complete statistical description of the real field is required; on the other hand, the moments
of the complex field up to that order can be determined from the knowledge of the moments of the real field
up to the same order. The results are illustrated by explicit calculations relating to the Gaussian random
process, which, as is well known, characterizes the fluctuations of thermal light. A converse of a well-known
theorem of Kac and Siegert relating to a Gaussian random process is derived as an immediate consequence

of our analysis.

1. INTRODUCTION AND FORMULATION OF THE
PROBLEM

The classical theory of optical coherence of statisti-
cal fields, whether the field is stationary or nonsta-
tionary, whether it is generated by a thermal source
or some other source is today well formulatedl.2

and is being applied to a wider and wider class of
optical problems. There is, however, one problem in
the foundation of the theory, which has so far not been
treated. In this paper we will formulate this problem
and present a solution of it for a wide class of non-
stationary processes.

Let us denote by X(r, {) a real field variable, repre-
senting the optical field at a point r, at time {. For
the sake of simplicity we consider X to be a scalar,
e.g.,a Cartesian component of the electric field.
(Generalization to a vector field is straightforward.)
For any realistic field, X(r,¢) will fluctuate in the
course of time in a manner that is not strictly pre-
dictable. It is,therefore, appropriate to regard X as
a member of an ensemble of different realizations of
the field. The statistical properties of the field may
then be specified by a sequence of probability densi-
ties

p](-X) (Xl;Rl)y p2(X)(X1’X2;R1,R2)7

PO Xy, X, X53R,Ry,R5), ..., (1.1)

where R; = r;, tj denotes a typical space-time point,
To illustrate the meaning of these probability densi-
ties let us consider p4 %): The quantity p &) (X, X,;
R, ,R,)dX dX, denotes the probability that at the
space—time points R, and R,, X will take on values
that are in the intervals X,,X; + dX, and X, and
X, + dX,, respectively.

It is customary and useful to introduce a complex
representation of the field.3 This representation,
originally due to Gabor,4 arises naturally in the
theory of photo-electric detection of light fluctuations.
The associated complex field also corresponds to the
eigenvalues of an operator used in the theory of quan-
tized fields, to represent the annihilation of a photon2
at a space—time point R. Some minimal properties

of this complex representation have been established
by Mandel, 5

To introduce this complex representation, we assume,
that for each r, the typical realization X(r, ) is
square integrable, with respect to time® and, hence,
may be represented as a Fourier integral
X(r,t) = f_o:o &(r,v) exp(— 2mivt)dv. (1.2)
Since X(r, ) is real, £(r,— v) = £*(r, v), where the
asterisk denotes the complex conjugate. Because of
this relation it is clear that the negative frequency
components of each realization of the field do not
contain any information that is not contained in the
positive ones; hence, in place of the real function
X(r,t) we may employ the complex function
Z(r,t) =2 fooo &(r, v) exp(— 2mive) dv, (L.3)
known as the complex analytic signal, associated
with X(r, ). This terminology arises from the fact
that by a well-known theorem? Z (r, ¢) considered as
a function of a complex £, is regular and analytic in
the lower half of the complex ¢ plane. It is trivial
to show that the real part of Z(r,?) is precisely the
function X(r, ) and, on using the analytic property of
Z that we just mentioned, one may readily show that
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the real and imaginary parts of Z form a Hilbert
transform pair, i.e.,

Z(r,t) = X(r,t) + 1Y (r, 1), (1.4)
with
_ 1 o X(r,t)at’
Y, ) == f, =1 (1.5a)
Xty =— 1 f.° X(it"»é){)i (1. 5b)

where the strokes on the integral signs indicate that
one takes the Cauchy principal value of the integ-
rals at ' = ¢,

The statistical properties of the complex field Z(r, ¢)
may also be specified by an infinite sequence of prob-
ability densities

pl(Z)(Zl;Rl);pz(Z) (Zj_’Zz;Rlsz)y

{92,245, Z3;R Ry, R3), . (L.6)
The quantity pS4’(Z,Z,;R,,R,), for example, has
the following meaning: If d2Z, denotes the product
dX,dY,,then p,éNZ  Z ,;Ry,R,)d2Z d2Z , is the
joint probability that at the space—time point R,

the real and imaginary parts of Z will lie in the in-
tervals X;,X; + dX, and Y,,Y; + dY,, and at the
space—time point R ,, they will lie in the intervals
X,,X, +dX, and Y,,Y, + dY,, respectively,

Although Eq. (1.4), together with Eq. (1. 5a), shows
how to calculate the complex analytic signal Z(r, ¢)
that is associated with any particular realization
X(r,!) of the real field, it is not clear how one deter-
mines the statistical properties of the ensemble of
the Z's from the knowledge of the statistical proper-
ties of the ensemble of the X's. The present paper

is concerned with this question. More precisely we
will show how one may determine the sequence (1. 6)
of the probability densities {p,(#’} from the knowledge
of the sequence (1.1) of the probability densities
{p,&X)}. The problem is not a trivial one, since accord-
ing to Eqgs. (1.4) and (1. 5) the relation between the
real and the complex fields is nonlocal in time. In
solving this problem, it will be useful to work ex-
plicitly with the characteristic functionals® rather
than with the infinite sequence of probability densi-
ties, We will, therefore, reformulate the problem in
terms of such functionals.

2. REFORMULATION OF THE PROBLEM IN
TERMS OF CHARACTERISTIC FUNCTIONALS

Let g = g(r,t) be an arbitrary real function, The
characteristic functional of the real field X(R) = X(r, {)
is then defined by the formulas

c®g()] = (expli gR)X(R)dR})
A /5fg<R)X(R)d4R§”>_
n! \? /

(2. 1a)

(2. 1b)

In Egs. (2. 1a) and (2. 1b) the sharp brackets denote
statistical average. From this functional one obtains
the Nth order characteristic function C{’ and the
Nth order probability density of the real field in the
usual way. One chooses

N
gR) = Z_i a,0 W({R-R,), (2.2)
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wheretheq, 'sarereal parameters, the R's are arbi-
trary space-time points, and (%4 is the four-dimen-
sional Dirac delta function. Then

CPg()] > ¢ (ay,ap,...,2,;R 1, Ry, ... ,R,)

_ <exp<i nZN)OanX(Rn)>>

AV
:f fexp(i > aan>
n=1
X PEX 1, Xp; oo, Xy iR LRy, - Ry)
X dX,dX, - dX,, (2.3)
and on Fourier inversion,

PXX,, Xy, ..., Xy ;R Ry, ..., Ry)

1
T @n S J e @y, ay,..

N
R,R,,...,Ry) exp <—i 21 anXQ
ne

X dadog -+ day. (2.4)

"QN;

Each of the integrals on the rhs of Egs. (2. 3) and
(2.4) extends from — o to + « .,

In a similar way we may define the characteristic
functional of the complex field Z(R) = Z (r, ) as
CO[h()] = (expli [ [1(R)ZR) + h(R) Z*R)|d%R}),

(2.5)
where #(R)= h(r,?) is an arbitrary, generally com-
plex function of r and {. The Nth order characteris-
tic function and the Nth order probability density of
the complex field Z is then formally obtained from
(2.5) by setting

N

h(R)= 21 B,0WR—R,), (2. 6)
n-

where the 8, 's are complex parameters. Then

C(L)[h(')] - CISIZ)(ﬁP BZ’ . ’BN;Rl)RZ’ o ’RN)

:<exp<i S [BZ®,) ¢ ﬁnZ*cRn)])>

= f fn-elxp<z

x pNz,, 2y, ..

N
% 1812, +5,2}))

n=1

sZyiR 1Ry .. Ry)

X d2z - d2z,, 2.7)
and, on Fourier inversion
P¥NZ 29y ooy Z 3R Ry, ... Ry)
1 )
= oo P (By,BayeevsBy3RysRy, .. R,)
7

N
<exp (=i 5 (832, + 8,271) a2y - a3y,
n=1 (2.8)
Each of the integrals on the rhs of Egs. (2. 7) and
(2. 8) extends over a complete complex 8, plane.

The correlation functions (moments) of the fields
may be obtained from the characteristic functionals
in the usual way by functional differentiation. Thus

X@R,)  XR N = (i onC DO[g ()]

2.9)
0g(R,) - 0g(R,)

£=0
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(Z*Ry) - Z*R,)ZR,. 1) ZR,, )
_ (_ l‘)n*m 6”+”‘C(Z)[h(')] .
éh(Rl)..' 6h(Rn)6h'*(Rn+ 1)... 6h*(Rn+m) k=0

(2.10)

It is clear now that the problem posed in Sec. 1 is
equivalent to the following one: To determine the
characteristic functional C [%(*)] of the complex
field Z (R) from the knowledge of the characteristic
functional C ®[g(-)] of the real field X(R).

3. FORMAL SOLUTION OF THE PROBLEM

As preliminary to solving the general problem that
we just posed, let us consider first the more res-
tricted one, of determining the statistical behavior of
the complex field variable Z (r, ¢) at some fixed point
r in space from the knowledge of the statistical pro-
perties of the real field variable X(r, {), at the same
point. Since the fixed point r plays no essential role
in our analysis, we will suppress the explicit depen-
dence on r, i.e., we will write X{f) in place of X(r, ),
etc.

We recall that we assumed that each realization of
the real field is square integrable with respect to
time. Under these circumstances the random vari-
able X (¢) (which, for the sake of simplicity we assume
to have zero mean value), may be expressed in the
form of the generalized Karhunen—Loeve expansion,?
valid for all {{(— o < { < @),

o0

X = 23 ¢, 0,(0), (3.1)
where the ¢, (f) form an orthonormal set
f::, ¢n(t)¢m(t)dt= 0n,ms (3.2)

m being the Kronecker symbol, and the coefficients

¢, are uncorrelated real variables

(€ 0Cm) = A0y m» (3.3)
with the A, being real and nonnegative. As is well

known? the ¢, and the A, are the eigenvalues and the
eigenfunctions of the integral equation

f_: R(ty,t5) 0, (t5)dly = X, 0,(ty), (3.4)
with the kernel
R(tptz) = <X(t1)X(tz)>- (3.5)

According to (3.1) and (2. 1a), the characteristic
functional of the real random field variable X(¢),
which we will denote by C %) g(-)] (subscript 1 indi-
cating that we now deal with behavior at one fixed
point in space) may be expressed in the form

CO[g()] = <exp<z§2 cnun>>,

where
+o0
w, = J

Let us now turn to the ““conjugate” field variable Y (¢)
[Eq. (1. 5a)]. If we substitute in Eq. (1. 5a) for X(¢)
the orthogonal expansion (3. 1), we may express Y ()
in the form

(3.6)

gt o, @B)dt. (3.7)

Y()= 25 cp,l), (3.8)
where
1 e 9, ()a
l‘/‘/u(t) —% D[_ao (t _ t) ‘ (3. 9)

One can readily show that the ¢, just like the ¢,
form an orthonormal set.19 In fact, Eq. (3. 8) is
nothing but the generalized Karhunen-Loeve ortho-
gonal expansion of the random field variable Y (). It
follows on using (3. 8), that the characteristic func-
tional Y (f) may be expressed in a form strictly ana-
logous to (3.6):

CM[g()]= <e><p[ifg(t)Y(t)dt]> (3. 10)
=<exp<i i cnvn>>, (3.11)
n=1
where
= f_:’ g, (b dt. (3.12)

The average in (3.10) is defined in 2 manner similar
to that employed in connection with Eq. (2. 1a).

If we compare (3.11) with (3. 6) we see that the right-
hand sides are of the same functional form, except
that the #, have been replaced by the v 's. Thus if we
express c g ()] in the form

c@g()
then
c1(y)[g(') =

i.e.,the characteristic functional of the conjugate
random varviable Y(t) may be obtained from the
charactevistic functional of the oviginal random
variable X(t) by simply veplacing all the u,'s by the
v,'s, where the u, 's are the projections of g(f) ontothe
set {(1) } and the'v,'s are the projections of g(t) onto
the set {, } [ct. Egs. (3.7) and (3. 12)].

Next let us consider the complex random field vari-
able Z(t) = X{t) + i{Y{t). Using the expansions (3. 1)
and (3. 8) it follows that Z () may be expressed in the
form

= fluqg, g, e sy, e e0), (3.13a)

f(1)1,1)27"‘7vn,"')’ (3.13b)

Z(t) = ij)l CoXnl?), (3.14)
where
X, @) = 0,0 + i, (). (3.15)

From (3. 15) and (2. 5) we then obtain the following
expression for the characteristic functional of Z:

CDn()] = <exp< Z) ¢ W>> (3.16)
where
w, = [ [, O + hoxs©)]at (3.17)

If again we express C®[g(")] in the form (3. 13a) we
see, on comparing (3. 16) with (3. 6), that C ([ k(")]
may be expressed in the form

Cl(z)[h(')] :f(wlywz"'-’wn7"')’ (3. 18)
i.e.,the characteristic functional of the complex ran-
dom field variable Z(t) may be obtained from the
characteristic functional of the real random field
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variable X(t) by veplacing the u, by the w,. In view
of the remarks follows Egs. (3. 10) this result pro-

vides a formal solution to our problem, for the spe-
cial case when only one spatial point is considered.

For the purpose of later discussion, we will also
write down an expression for the joint probability

b ({c ) =p(cq,C9y...,C, - -+) of all the coefficients
¢, occurring in the generalized Karhunen-TLoeve ex-
pansion (3. 1). It is clear that the characteristic
functional C ®[g(-)], given by (3. 6), may also be ex-
pressed in the form

= exp( ) c,,u,,)m{c hade, ).

(3.19)

The integral on the right-hand side is taken over all
the ¢, (—® < ¢, < ®) and is, therefore, infinite dimen-
sional. Formal Fourier inversion of (3. 19) gives the
required joint probability p({c }) in terms of the
characteristic functional C ®[g(")]:

() ddu,}).

pe,h= [ f ﬂ
(3.20)

Returning to expressions (3.13a) and (3. 18) we see
that the function f(wq,%w,,...,w,,++) is specified
by the complete statistical behavior of the real field
variable X(f). Hence in order to determine from our
formulas the joint probability density %) of the com-
plex variable Z(t) at N instants of time, one must
know the statistical behavior of the real field vari-
able X(1) for all times. On the other hand, on using
the Hilbert transform relations between the real and
imaginary parts of the complex field variable [Eqgs.
(1.5)], one can readily see that in order to determine
an Nth order correlation function (which may be an
equal-time correlation function) of the complex field
variable, one only needs to know the Nth order corre-
lation function, (which, in general, is a multitime cor-
relation function), of the real field variable, To illus-
trate this, consider the second-order correlation

C g (

1/277) e—icnun]cl(x) [g

function (Z(t4) Z*(¢,)). We have
v (tl)Z*(t2)>
=([X(@,) +iY(t)][X () — ¥ (E)])
= (X(t 1)X(tz» F(Y ()Y () — X () Y ()
+ Y (t) X)) . (3.21)
In view of (1.5) one evidently has
1 0 +o0 (X)X
= ar’ dt!
YY) =2 F, dt,
1 o (X(E) XD
X@E)Y ) = — f_w dt'y it —15)
1 o0 (X)X ()
W)X == F ayy —(t-ll_—tlz)-— (3.22)

Equation (3. 21), together with the relations (3. 22),

expresses the second-order correlation function

(Z(t,)Z*(t,) in terms of the second-order correla-

tion function (X (¢,)X(t;). Of course to determine

(Z(t1)Z*(t,) for a fixed pair of values ¢; and f,, one

must know (X{t,)X(t5)) for all values of its arguments
1 and £5.

Up to now we have confined our attention to the be-
havior of the field at one space point only. Generali-
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zation to the complete field is straightforward. In
place of Eq. (3.1) we now have the expansion

c,(r)o,(r, 1),

00

X(r,t) = 25

n=1

where the ¢, (r, ) are solutions of the integral equa-
tion

(3.23)

+00
Lo R(r,ty51,85) 0, (r,t,)dty = 2, (1) ¢, (x, 1), (3.24)
with the kernel

R(r,ty5r,t,) =(X(r, 1)) X(r,2,)). (3.25)
The functions ¢, (r,?) and ¢, (r, ) satisfy, for each r,
orthogonality relations analogous to (3.2) and (3. 3).
The characteristic functional C ®[g(-)] of the real
field X(r, ¢) defined by Eq. (2. 1) may, by analogy with
Eq. (8.13a), be expressed in the form

C(X)[g(-)] =f [“1(')’ ety ), -- .],

where
= - Jex, o

The characteristic functional for the associated com-
plex field Z (r, ) may then be expressed in the form

(3.26)

(r,t)d3vdt. (3.27)

CORO)] = f [w1() vy, (), <], (3.28)

where
Y= [ oor [[R¥(r, ) x, (r, 8) + h(r, ) xX(r, )] d3rdt,
(3.29)

and the x, are defined, for each r, in a similar way as
before.

4. EXAMPLE: GAUSSIAN RANDOM PROCESS

To illustrate our results we will now determine the

character1st1c functlonal C{&[h(-)] and the probabi-

lity density p{%[r, {] for the case when the real field
variable X (¢) represents a Gaussian random process
with zero mean.

The characteristic functional for a real Gaussian
random process with zero mean may be expressed
in the form (see Appendix)

C®O[g()] = exp(— 3 {7: glty)g(t,)
X (X (t,) X(E,)) dtldtz) . @4.1)

Now according to (3.1) and (3. 5), the correlation
function (X (¢,)X(f,)) may be expressed in the form
o0 o0
(X(tl)X( Z)l Z)l (cncm>¢n(t1)¢m(t2)
o0
= 21 A9, (1) ¢, (E5). 4.2)
n=

If we substitute from Eq. (4. 2) into Eq. (4.1) and
recall the defmltlons of u,,given by (3. 7), the charac-
teristic functional C X may be expressed in the
simple form
o0
c g0 = exp(— ) 7\#3) : (4.3)

According to the theorem following Egs. (3.13) and
(3. 18), the characteristic functionals C (Y)[g( )] and
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C{#[ ()] are obtained at once from (4.3) on replac-
ing the u, by the v, and w, [defined by Egs. (3. 12)
and (3. 17)], respectively,

CiY)[g(.)] - exp(—% ij)l )\nv?l), (4.4)
C@g()] = exp(—é i A,ng) (4.5)

We may readily express (4.4) and (4. 5) in forms ana-

logous to (4.1). We have from (3. 1 ),( 8), and (3. 3)
5 a0z = 5 a [ #0080 00, () dtdl,
= ff g(tl)g(tz)z }‘nlpn(tl)wn(tz)dtldtZ

s
i
[

i <an//n (tl)

m=1

MS

= ff g(ty)g(ty)
>< dt,dt,

ff gt
Similarly, we have from (3. 17), (3. 14), and (3. 3)
2 sz—z; A, ff (t1) h(tg) x5 (1) Xk (Es)

+ h( D () xE () x, (E5) + c.c.]dtdt,
ff h(ty) h(t)(Z*(t) Z* (t,)) dtdt,

+ffh DR Z* () Z ()
xdt ,dt, + c.c.,

Com wm(tz»

—

s

4.6)

)Y (£, Y (t,)) dtdts,.

4.7)

where c.c.denotes the complex conjugate. On substi-
tuting from Eqs. (4. 6) and (4. 7) into Eqgs. (4. 4) and
(4. 5), respectively, we obtain the following expres-

sions for the characteristic functionals C (¥ and C{4:

Cle= exp(— & J] £t (¥ () 70
xdtldt2> , (4.8)

o) exp<—sz Dhlty) (2% (1) 2 (t,)

+ Bt (2><A*<t1)z*<t2>>+c.c.]dt1dt2). .9

Equation (4. 8) implies that the conjugate process Y (t)
is also a real Gaussian process with zero mean; and
by a similar argument as given in the Appendix in
connection with the real Gaussian process, one can
show that (4. 9) implies that the process Z(¢)is a com-
plex Gaussian random process with zero mean. The
correlation functions occurring in (4. 8) and (4. 9) may,
of course, be expressed in terms of the correlation
functions of the real process X(f), with the help of re-
lations of the form (3.21) and (3.22).

Next let us determine the first probability density
p(Z) (Z,1t) of the complex process, by following the pro-
cedure outlined in Sec.2. We choose

hit)y = gét—t'), 4.10)
where ¢’ is a real and $ is a complex parameter.
Then from Eqgs. (4.9) and (4. 10) we obtain the for-
mula
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CO@;t") = exp{~ 3[B2(Z* (") Z* (')

+ BR*(Z(E") Z*¥@') + c.c.)}, (4.11)

and from Eq. (2. 8), we find with N = 1 and with a
trivial change in notation

pP(Z;t) = (1/72)
x [ exp{— 3 [B2(Z*(t)Z*(t)) + BBX(Z () Z*(t))
+ c.c.]} exp{—i (8*Z + pz*)} d2p. (4.12)

The integral occurring on the rhs of Egs. (4.1) may
be evaluated with the help of a formula derived by
Bargmann (Ref. 11, Sec. 1h). The result is

1
102 — 4a*a)l/2

s *0 — x *
N exp(_( a*Z2 —aZ*2 + bz Z)>, 4.13)
(b2 — 4a™a)

PPz, =

where

a=KZ)Z({t), b=AKZ*A)Z(¢). 4.14)
In general, both ¢ and b are, of course, functions of ¢
and are derived from the real correlation function

(X(tl)X(tz) via formulas of the type (3. 21) and (3. 22).

Finally we note that from Eqs. (4. 3) and (3. 20) we
can readily obtain the following expression for the
joint probability distribution for the coefficients
€y,Cy,* - in the generalized Karhunen—-Loeve expan-
sion of a real Gaussian random process

pde ) = [+ /1 [a/2m)

X exp(— 3 A\u2 —ic,u,)]d{u,}). (4.15)
Each of the integrals on the right may readily be
evaluated, and one obtains the result

b=, [l

The joint probability of the first N coefficients ¢,

may then be obtained by integrating (4. 16) over all
possible values of each of the coefficients c; (oo <
c;sw)forj=N+1,N+2---. One then obtains

the formula
_c2
ex 3. 4.17)
p< o, ﬂ (

The result expressed by Eq. (4. 17) is essentially the
converse of a well-known theorem of Kac and Sie-
gert, 12

(4. 16)

N
.,CN): IT

1
plenezmren) = 1 |

APPENDIX: THE CHARACTERISTIC FUNCTIONAL
OF A REAL GAUSSIAN RANDOM PROCESS

By definition the characteristic functional of a real
random process X(¢) is

C®g()] = <exp[ilX(t)g(t)dt}>. (A1)

The average on the right-hand side of (Al) is to be
interpreted with the help of the Taylor expansion, i.e.

b
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Cwlg()] = <2 [fxa)g(t)dtp
SRR

G e J X ) e X)) )

X diy - dl,, (A2)

where all the integrations are taken from — © to + «,

Suppose now that X(¢) is a Gaussian random process.
Then according to the moment theorem for such a
process13 we have, for every nonnegative integer X,

<X(t1)X(t2) tt X(t2K+1)> = O, (A3)
<X(t1)X(t2) cte X(tzx)> = ZIE (X(til)X(ti2)> e
X <X(ti2K—1)X(ti2K)> , (Ad)

where the symbol 2} denotes summation over all
possible permutation of the indices 1,2, ...,2K label-
ing the time arguments. There are (2K)!/(2XK!)
terms in this summation.

From (A2)-(A4) it follows that for a Gaussian random
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process X(t) of zero mean
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We interchange the multiple integration and the sum-
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tegrations extend over the range from — © to + @,
each of the 2n-folded integrals will give the same
contribution and, since there are (2n)!/2"n! terms
in the summation 2;;, (A5) reduces to
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2. NONCOMPACTNESS

In this section an example is given which shows that
the transformation which arises from the generalized
optical theorem is not compact in a space of contin-
uous functions with the uniform topology, contrary to
Theorem 1 of I and Sec.3 of II. The example is given
in a canonical form, namely we do not assume spheri-
cal symmetry, and no change of variable is used in
the integral. Furthermore, the same example can be
made to work in the special case where spherical
symmetry is assumed.

We shall generally follow the notation of 1. The equa-
tion under consideration is

ImAm’,n)= (k/4r) fSA(n”,n)Z(n”,n’)dQ(n"),
n,nc S, (1)

where A(n’, n) [which is assumed to equal A(n, n’)] is
the scattering amplitude for incident direction n and
scattered direction n’; 2 is the wavenumber; and dQ is
the solid angle measure on the unit sphere S in R3.
(1) is sometimes known as the generalized optical
theorem and leads immediately to two equations:

ImA@,n) = (k/47) [ [ReA(”,n) ReA(n”,n’)
+ ImA(@”,n) ImA@®”, n'}]d2, (2)

0 = (k/4r) fs ImA(@®”,n’) ReA(m”, n)
X |- ReA(n”,n') ImA(n”,n)}d2. (2)

That (2’) is identically satisfied for any solution A of
(1) is a2 consequence of the fact that A(n’,n) = A(n, n’).
Thus our attention focuses on (2). Write A(n’,n) =

k7 1G (n’, n)ei®@".M and put

H@”,n’,n) = G(n”,n’)G(n",n)/4nG(n’, n)
and
Q@' n) = [ Hn",n',n)dQ. (3)

Then (2) becomes

sinp(n’,n) = [ H@",n’,n) cos[¢ (", n')
—¢@",n)]de. (4)

Let Y; be the Banach space of continuous functions on
S x S into R with [{f! = sup{|f(n;,n,)l: n;,n, € S}
PutY ={f € Yy :f(ny,n,) =f(nyn,),vn,,n, € S}. ¥
is a closed subspace of ¥y and so is itself a Banach
space. We now define a transformation 9 on Y': for

¢ € Y,n;,n, € S, we define

M¢(n’,n) = Aresin fs H{@n”,n’,n)
X cos[¢(n”,n’) — ¢(n”,n)}dR. (5)
Then to solve (1), we seek a fixed point of M. Let us

assume the analogs of the hypotheses of Theorem 1
of I, namely

H1l. G:S xS —>[0,) is continuous;

(8)
H2. sup{Q(ny,ny):n,,n, € S} =M < 1,

We note that H2 forces min{G(n,n,):n ,n, € S} > 0,
so H is continuous (hence bounded), and the same is
true of @, 50 @ € Y and H2 may be replaced by the
statement Q! = M < 1.
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Convergence in S X S is defined in terms of the
Euclidean norm |- |, in R6; an easy application of
the Lebesgue bounded convergence theorem shows

¢ €Y = M¢ is continuous. Noting that M¢ (n’,n) =
M¢(n,n’), we conclude M¢p € V. In particular, be-
cause of H2, range (JM) C B’ (0, ArcsinM), the closed
ball in Y about 0 with radius ArcsinM.

We get the same results in the case of spherical sym-
metry when the appropriate modifications of the
equation and the underlying function space are made
[for example, one might use (6) of I, being careful to
note that (6) only holds in the open interval — 1 < x
< 1;for x = = 1 the correct expression is (6’)]. We
only remark that in this case, convergence in S is
convergence in the metric d(ny,n,) = V4 (nl,nz)l
where Z (n;,n,) is the angle between n, and n, in
radians, and convergence in S X S is convergence in
any product metric.

We are now ready to state the main result of this
section.

Theovem 2.1: Range (W) C Y is not compact.

Proof: Suppose the contrary. Then by Ascoli's
theorem, Range (91) is an equicontinuous uniformly
bounded set (this is Newton's claim); in particular,
Range (M) is equicontinuous at (ny,ny) € S XS. Then
given € > 0,36’ = 6'(e,ny) > 0 such that for alln
with [n —nylz < 6’ and for all $ € ¥ = Domain (),
we have I‘m¢(n0,n0) —Me @y, n)| < e. Let us choose
€<% Q(ny,ny), noting that Q(ny,n,) = 0 if and only
if G = 0, a possibility which we shall rule out.

Let ¢ € Y;we wish to bound [9M ¢ (ng, ng) — M (ng, n)l
below:
lm¢(no, no) - ‘JTl(b(nO, n)'
= | Arcsin fs H(@", ng, ny)dQ (n”
— Arcsin fs H{n",ny,n) cos[¢(n”, ny)
— ¢(@”,n)]dom”)|
= (1 p2)yv2| fs H(n",ng,ng)dQ
— fs H(n”,ng,n) cos[¢(n”,ny)
—¢m",n)]dR{(0=p=M)
= | fs H(@n",ng,np){ 1 — cos[¢@m”, ny)
— ¢, )l}ag — [, [H@", ng,n)
— H(n",ny, ny)] cos[¢(n”,ny) — ¢(n”,n)]de]
= fs H@",ng,no){1— cos[é@”,ny)
- ¢ (n”y n)]}dﬂ - | ‘fs [H(n”’ nO; n)
— H(n",ng, ng)] cos[é(n”,ng) — ¢@”, m)ag].
Considering the rhs term for a moment, we see that

H(n",ng, n) is a continuous function of n and is bound-
ed, and so we may apply to

| fS [H(n”’ n()’ n) - H(n”’ Ilo, no)]
x cos[¢(n”,ng) ~ ¢(n”,n)]aQ|
= fS IH(II",HO,H) —'H(n”;no’n())ldﬂy

the Lebesgue bounded convergence theorem. This
gives 36” > 0 such that |n — ny| 5 < 6” = this quan-
tity is < § Q(ngy, ng).

J. Math, Phys., Vol. 13, No, 11, November 1972
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Thus for |n— nyl 5 < 57,

|96 (ng, ng) — M (ng,m)| = [, H(n”,ng,ng)
x{1 — cos[¢(m",ny) — ¢ (", n)]}d2 — £ Q(ny, n,).

Let 6 = min{6’, 5"} and choose n, € S with |n, —

ny| z < 6. We now show the existence of a function in
B'y(0, z m) for which |M ¢ (ng, ng) — M (ng,n,)l is

> €. Let B; be an open ball on S centered at n; for
which

fB d2< Q(ng,ny)/16P, i=0,1,
i

where

P = m{aé)é H(@n",ng,ng).

Put T = S\(By U B,). Then clearly

|9 ¢(ng, ng) — M (ng, 0)| = fT H@",ng,ng)
X {1 — cos[¢(n",ny) — ¢(n”,n)]}dQ — § Q(ny, ny)
(7)

and
fT H(n”; n()y no) dQ = Q(noa no) - fBO 8] BlH(nH, no, no) dﬂ

= Q(ng, ny) —P(fB ao + fB d2) = 5 Q(ngy, ng).
0 1 (8)
Let ¢ be a Urysohn function for the disjoint closed
subsets Ty = T X {ng} U {ngl X T and T, = T x {n;} U
{n;} X T of the (normal) space S X S which sends T
onto 5 7 and T, onto 0. Put ¢,(n, m) = Y(m,n) +
¥(m,n). Then clearly ¢, is continuous, 0 < ¢ = 37,
and ¢,(m,n) = ¢,(n, m), so ¢, € B', (0,3 7). Further-
more, for alln” € T, we have | ¢p,(n”,n,) — ¢ (0", n,)l
1

=57,

Then finally,

[M Py (g, ng) — Mepg(ng, ny)l
= fT H@m",ngy, ng){l — cos[dy(n”, ny)
— ¢o(n”, n,)1}d2 — §Q(ng, ny)
=% [ H@",ng,n0)dQ — §Q(ny, )

= s QNg, ng) — § @(ng, ng) = 15 Qng, ng) > €
which is the desired contradiction.

Remarks: (1) A very similar technique yields the
same results for the spherically symmetric case.
The main difference is that instead of cutting out
small balls about n; and n,, one has to cut out an -
small open strip £ surrounding the equator of the
sphere on which Z (ny, n”) = Z (n,, n”) for every n”,
and of course ¢, now needs to be constructed in
accordance with this change: Here T is S\Z, T, T,
and ¥ are as before, with the new 7.

(2) This theorem shows that we cannot use Schau-
der’'s theorem to conclude the existence of a fixed
point of 9N in Y without some additional conditions.
For example, one could restrict the domain of 9N to
some compact convex subset of Y and add some con-
ditions on G so that 9N leaves this set invariant; how-
ever, it is felt that these conditions become much too
severe.
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(3) The theorem also shows we cannot get M to be
compact by restricting the domain of 9 to the positive
cone inY,i.e.,{¢ € Y:¢(ny,n,) =0,ny,n, €S},

(4) InII, the attempt is made to show 9N is compact
by showing M 2 is compact. Without additional condi-
tions, one may not conclude this, however: For ex-
ample, even if T is a bounded linear operator in a
Hilbert space, to assert 72 compact = T compact
one needs at least the additional condition that 7' be
normal,

At any rate, even if the demonstration that M2 is
compact were successful (which it is not, as we shall
see below), we could only conclude the existence of a
fixed point ¢ = 9M2¢, and only if it were unique (which
cannot be concluded a priovi) could we get ¢ = M.

To see that 92 is not compact either, we note first
of all that one cannot expect to control IPl(cosel) —
P,(cosb,)| for all values of 8;, 8, with a bound that
does not grow with ! . However, and more convincing-
ly, an explicit counterexample can be constructed
along the lines of the theorem. M ¢ < Y so we have
(7) and (8) are true for functions in Range (9N) as
well. So if we can show there is a ¥/, € Y such that
$g = MY, where ¢, is the function of Theorem 2.1,
we are done, This can be done easily if we are will-
ing to sacrifice the equality sign and replace it by
the condition that [l¢g — M, be suitably small.

The technique used to obtain ¥/; and the remainder of
the argument is quite similar to that used in Theo-
rem 2.1, and since there are no new ideas here, the
detailed computation will not be produced.

3. UNIQUENESS IN THE CASE OF NO SPHERICAL
SYMMETRY

The motivation for this section is to try to extend

the results of the first part of Sec.4 of II to the case
where there is no spherical symmetry. Throughout
we will assume (6) and denote by X, the Hilbert
space L2(S X §,dQ) = L2(S X S,GdQ), that is, the space
of all real-valued, square-integrable [d2] functions
on S X § with weight function G, and ¢/l ; = IGoll,.
We put X = {¢ € X;:¢(ny,n,) =¢(ny,n,),Vny,n, €
S}. X is a closed subspace of X, and so is itself a
Hilbert space. As an aid to establishing the principal
result of this section, we prove the following simple
lemma:

Lemma 3.1: Let (E,d) be a complete metric
space,A:E — E,and let h: E—~ E be a homeomor-
phism such that d(ieAxy, hoAxy) < yd(hxy, hx,) for
Xy, %9 € E,withy < 1. Then A has a unique fixed
point which can be constructed by successive approxi-
mation.

Proof: Apply the Banach contraction mapping
theorem to the map T :k(E) — h(E) given by T (hx) =
hoAx. This gives a unique x, € E such that h.Ax, =
hxg. Apply 271 to get Axy = x,.

Theovem 3.1: Under hypotheses (6) and if in addi-
tion sup{Q(n,,ny)in, € S} =M < (1 + (1/472)
G13)"1/2, then (1) has a unique solution in X, and the
solution can be found by successive approximation.

Proof: For ¢ € X, n’,n € S, define a transforma-
tion M : X — X by expression (5). We prove an esti-
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mate which allows us to use Lemma 3.1 with A =91,
E={pcX: 0= ¢ = arcsinM< 57 a.e. [dQ]}, and

h the mapping ¢ ~> sinf, which is a homeomorphism of
the interval [0, arcsinM] onto the interval [0, M]. H2
guarantees that N : E - E. Let ¢4, ¢, € E; we begin
with (19) of II, which in our context may be written

|G (', n)[sinIM ¢, (n’, n) — sinM,(n’, n)]|
= (1/4n)M(1 — M2)-1/2 fs G(",n’)
X [sindM ¢, (n”, n’) — sinM ¢,(n”, n')]JG (n”, n)
X [cosM ¢, (n”,n) + cosM¢,(n”, n)]dQ.

Use the Schwarz inequality, square both sides, and
integrate over d2(n’)dQ2(n). Noting that [cos¢, +
cosgyll o = 2[G1 5, we get |sinM¢; — sinMg,[lZ2 =
(1/472)M2(1 — M 2)"1|G|l 3llsing, — sing,lZ, and now
the result follows from Lemma 3. 1.

Remarks: (1) The theorem still holds if H1 of (6)
is weakened to G € L (S X §).

(2) The result is obviously true in the spherically

symmetric case as well; in particular, if G|, < 27

this theorem is an improvement on the first part of
Sec.4 of II. Of course, since we are in L2, the fixed
point need no longer be a continuous function.

(3) 1t is also possible to get a unique fixed point for
. . 1 1,
9N in L2 under the condition M < (1 + —2?HGH°°) z;

however, in this case, as in Sec. 4 of II, we do not get
the construction of the fixed point. This assertion
follows from the following lemma, which, together
with some elementary estimates, shows that if ¢ is
a fixed point of M, Hcosd)H(z; < 27|G|_ (use this esti-
mate in place of f[cos¢; + cosp,l = ﬂ(;iiz in the es-
timate in Theorem 3. 1, and proceed as in II).

Lemma 3.2: 1f ¢ is a fixed point of M, then 0 =
¢ = ArcsinM,

0= fs fs G (n’, n) cos¢ (n’, n)dQd2 < 27,
and
0= fs fs G(n’, n) sing (n’, n)dQdQ =< 4.

Proof: 0= ¢ = ArcsinM is proved in Sec. 2 of II.
Define A(n) = fs G(n’,n) cos¢(n’,n)dQ and B(n) =

fs G(n’,n) sing(n’, n)dS2. Integrate (4) d2(n) to get

B(n') = (1/4m) fs A{”)G(’,n") cosp(n’,n”)dQ
+ (1/4n) fs B(m”)G(n’,n"”) sing(n’,n")dQ. (9)

Now integrate (9) dQ2(n’) to get

[ Bm)ag = (1/4) [ [A@)2 + B(n)2]d
= (1/4n)] f, AmaQ]? + (1/4n)] [  Bn)dn)2.

Putting @ = fs An)dQ, b = fs B(n)d, we have b2 —
47b + a2 = 0, which is satisfied for 27 — (472 —
a?)V2 <p < 21 + (472 — a2)V2, which forces |al| =
2r and 0 < b = 4.

(4) The estimates obtained here are somehow satis-
fying since as |G| gets small,M increases to 1,and
so as G — 0 (and we certainly know A for G = 0!) we
get closer to the condition M < 1 for a unique solu-
tion.

4. CONCLUSION

The condition H2 introduced by Newton is felt to be
too severe for the mere existence of a solution. Of
course, ||@l = 1 is an inescapable a priori estimate
if one wishes to apply any of the classical fixed point
theorems (e.g., Schauder, Banach contraction), for it
is this condition that guarantees that range (91) stays
in the right place. However, we now have to consider
what we really mean when we ask existence and
uniqueness questions about (1). Let us recall that for
any given (sufficiently regular) bounded obstacle and
boundary conditions, the function A(n’, n) exists and
is unique (use, for example, the uniqueness theorem
of Wilcox3). The generalized optical theorem arises
only as a necessary condition on this function 4;in
other words, (1) is always satisfied by the function A
which is the scattering amplitude for the particular
problem under consideration. So the existence of a
solution to (1) is really not in question (Schauder's
theorem is not much help after all!). We view the
generalized optical theorem, then, as a computational
device for recovering the function A from the ex-
perimentally determined |A| 2, and as such, the
interesting question is that of uniqueness of solu-
tion, for it is this question which will settle the use-
fulness of (1) as a computational tool. We need to
know under what conditions on |A| are we guaran-
teed that (1) has only one solution.

Note added in manuscript: The form of the gen-
eralized optical theorem used here, and the property
A(n,n’) = A(n'n), depend on the hypothesis A(n, n’) =
A(— n,— n’), which is used in the original derivation
of the equation. This hypothesis alone does not
force spherical symmetry; however, Professor V.
Weston has suggested that perhaps A{n,n’) =
A(— n,— n’) together with some other conditions on
A (e.g., A analytic) might imply spherical symmetry.
Also, there are perhaps cases with no spherical sym-
metry where we do not even have A(n,n’) = A(— n,

— n’'); and, in that case, (1) is no longer valid, and the
considerations for (2’) do not apply.

1 R.G.Newton, J. Math. Phys. 9, 2050 (1968).
2 A.Martin, Nuovo Cimento 59A, 131 (1969).

3 C.H.Wilcox, Proc. Amer. Math. Soc. 7, 271 (1965),
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Note on Nonlinear Representations
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In the theory of non-linear representations of a continuous group G with respect to a closed subgroup H, the
peculiar transformation behavior of the reduction matrix L, is found to be identical with the transformation
behavior of a set of coset representative elements of G with respect to H. The limitations of the extended
definition of the boost by Salam and Strathdee are discussed.

The most significant recent achievement? in the study
of renormalizable field theories lies in broadening
the concept of boost. This leads immediately to the
setting up of nonlinear representations of a continuous
group G through the introduction of the veducing
matvix L,. However,this matrix is found to have a
“peculiar transformation behavior under the opera-
tions of G”.2 In view of many possible applications

of the nonlinear group representation technique,a
critical study of the transformation of L, is worth
while. Let H be some specified closed subgroup of a
continuous group G for which nonlinear representa-
tions are to be set up which become both linear and
possibly reducible when restricted to H.

Let 1 be the unit element of G. Following the pre-
scription of Salam and Strathdee, let L, be the re-
ducing matrix. From the prescribed transforma-
tion properties? of L, we have

L,,=8L,h"H¢8). (1)
Hence L, € G for all g € G and h(p,g) € H.
For a fixed ¢ let

Ly = K(g) (2)

in the self-representation of G. From (2) we have

»=K(1) =K  (say). (3)
Hence, given L ,the element K(1) is uniquely fixed.
By writing y (g) for h(9,g),the transformation law
(1) becomes

gK(1) = K(g)hg (). (4)
Obviously, it follows from (4) that
g = K(gK7") Iy (6K7Y)- (5)

Hence every element g € G can be represented as
K(gKy Yk which is nothing but an element in the right
coset KH of G with respect to H. Now let p ¢ H;then
we have from (5)

gb = K(gK1 )y (gK71)p = K(gpK{1)hy (gpK71).  (8)

From the uniqueness of the right coset decomposition
it immediately follows from (6) that

K(gK71) = K(gpK71)

and (7
b, (gpKi1) = hKl(gKfl),b.

Using 1 = K(K7Y)hy, (K{1),we also have K(K71) = Iy
(K1) =1. ! !

Further, from (7),

K(KTY) = K(pK71) = 1
and (8)
hy (PKT1) = Ry (K7 Yp = p

for all p € H.
Now consider pK, = K(p)hKl(p). Then

K(p) = pK gk () (9)

is the most general way in which Kp transforms for
all p € H. If in particular

hg (P) = P, (10)
then the conditions imposed on L; by Salam and
Strathdee are satisfied. However, obviously it is not
necessarily satisfied for a general reduction matrix
L,. Now let us consider the transformation proper-
ties of K(g). From (4) and (7) it follows that

(i) K{g) transforms like a set of coset repre-
sentative elements of the group G with respect to
the closed subgroup H.

(ii) Given &g (g),which immediately defines the
transformation properties of qu over G,the L is
unique to within multiplication by a scalar and vice
versa.

From the above analysis it is obvious that given a

set of algebraic relations satisfied by L, it may not
be possible to set up nonlinear representations of G
over H in which L, satisfies prescribed analytic con-
ditions. For example, in the group~theoretical ap-
proach to the study of kinematical details of the multi-
Regge model, it is found necessary to construct3
boosts in the complex Lorentz group such that the
amplitudes introduced by Bali, Chew,and Pignotti4

are free of kinematic singularities and constraints.
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A Study of Relaxing Waves
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The equation u, + (1 + u)u, — fha uyu f(t — 7)dr = 0 is studied when an initial finite pulse «(x, 0) is given,
For the linearized equation, general solutions in terms of Laplace transforms are obtained and more explicit
expression for exponential kernels is given. An iteration expansion scheme is established for general kernels.
For positive kernels, it is found that the stability condition for the solution is [§ f(¢t)dt < 1. Then the large
time solution as well as the solution representing the main disturbance is obtained. For the nonlinear equation,
the condition for the"shock formation is obtained for the special case f(f) = pe™#!, or when the nonlinearity is

weak.
1. INTRODUCTION

In this paper we like to study the property of the
following integro-differential equation

up + (14w, — [O(1+ wu f(E—T)dT = 0. (1.1)

In many physical problems we are interested in the
study of wave propagation in a medium which exhibits
relaxation behavior. A notable example is the wave
propagation in a viscoelastic material, whose stress—
strain relation may be represented by the following
relation:

o= F(t) + f0°° Gle(t — 1), 7]dr. 1.2)
When the strain is small, i.e., when the linear visco-
elastic theory can apply, the wave equation can be put
in the form

uxx - fé uxx(x, T)f(t — T)dT = 0.

This equation has been briefly discussed by Vol-
terra.! A simpler version derivable from (1. 3) will
then be the linearized equation of (1.1),

(1.3)

¢
wy + Uy — jo u, (¢, 7)f(t— T)dT = 0, (1.4)
which will represent waves propagating along one
characteristic direction. Equations slightly different
from (1.1) have also been mentioned by Whitham in
connection to the study of water waves.?2

Equation (1. 1) represents almost the simplest type of
wave equations that incorporate the effect of both
nonlinearity and relaxation or heredity. For most
physical problems, there are usually also present the
effect of dissipation or diffusion. Often the effect of
dissipation will overshadow the effect of relaxation.
Here we purposely neglect any explicit dissipative
effects in order to see more clearly the role played
by the relaxation effect and how the mechanism of
relaxation interacts with the nonlinearity.

In the following, after a very brief general discussion,
we shall first study the linearized equation (1.4).
Although the problem can in principle be solved by
the method of Laplace transformation, not much can
be said about the formal solution. The emphases
then are concentrated on the development of a con-
vergent iteration expansion and the study of the
asymptotic expansions for large . The latter study
also leads to the establishment of the condition for
the stability of the solution. Both as probe and illus-
tration, particular cases with exponential kernels are
studied in some detail.

For the nonlinear equation, solution may not exist for
all the time, since among other things shock will
form. Our emphasis then is placed on the establish-
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ment of the condition of shock formation. Although
we have definite results only for some particular ex-
ponential kernel, and when the nonlinearity is weak, it
is clearly demonstrated that both the length of the
pulse and the nature of the kernel as well as the
maximum slope of the pulse will play an important
role in the formation of shock.

We may also mention that a technical report3 bearing
the same title has also been prepared, where more
detailed analyses can be found.

2. GENERAL PROPERTY OF THE EQUATION

We like to investigate the equation
u, + (1 + uu, — fo‘ (1 + wu f(t — )dr =0, (2.1)
with the initial condition

u(x, 0) = ugl). (2.2)

uy(x) is supposed to be nonvanishing only in a finite
interval of x;i.e., we are interested in the propaga-
tion of a pulse.

Since # = 0 as x — * % for any ¢, we obtain by inte-
grating (2. 1)

A2 e, e = 0, .9

or

ff: ulx, t)dx = const = j;+°o°°u0(x)dx, 2.4)

so long as # remains integrable, in particular, single
valued in x.

If we treat x in u(x,{) as a parameter, then (2. 1) rep-
resents a Volterra integral equation of the second
kind for the unknown (1 + #)u,. Let H(f — 7) be the
resolvent of f(f — 7); then we obtain?

w, + (1 +uu, + fot ou (x,7)H(t — 7)dr = 0.
ot 2.5)
3. LINEAR EQUATION

When # is small compared with 1, we may consider
the linearized equation

u, +u, — fot u, (c, )T = 0, (3.1)

Define the Laplace transform of u(x,{) and f () by

wlx, s) = f0°° e st ulx, t)dt

and _ -
fls) = fo e~st f(t)dt.
We obtain
ule, t) = [% dy ug@)Flx —3,1), (3.2)
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where
F(x—y,t):——l—— f ds est Flx —y,s), (3.3)
2mi ¢
and . -
F(z,8) = e72s/1°7()/1 — f{(s), (3.4)

with ¢, as usual, the contour to the right of all singu-
larities.

Now f(s) = 0 as s & « to the right of the contour ¢.
Therefore,

Fx—9v,8)=0 for x—y—{>0,.

Hence

ulx, t) = fx: Flc —y, uy)dy. (3.5)
If uy{x) = 0 for x < x; and x > x,, then it is clear that
u(x,t) = 0 for x > x, + ¢ and x < x;. This is indeed
what we should expect, since the wavefront is travel-
ing in x direction with speed 1. Nothing happens
ahead of the wavefront and behind the initial disturb-
ance.

Let z = x — y; we can also rewrite (5) as

ulx,t) = jot Flz, tuylx — z)dz. (3.6)

4. EXPONENTIAL KERNELS

The result in Sec. 3 is not very useful for practical
purposes, since the Laplace transform of a general
f(t) is not easy to obtain and to invert the transform
in (3. 3) is even more difficult. However, when f(¢) is
an exponential function, or even a sum of exponential
functions, an explicit Laplace transform and its in-
verse can be obtained.

Take
n
F@)y= 23 v;e*it, v, u,; real and u; > 0. (4.1)
i1
Then
~ L4 v;
S)= .
A9=2

If we now substitute in (3. 3), an explicit inverse trans-
form can indeed be obtained, although in terms of
complicated multiple integrals, which again is not
very useful.

Also we may remark that with the exponential ker-
nels, the integro-differential equation can be trans-
formed into a partial differential equation by succes-
sive differentiation with respect to £. For the kernel
given in (4. 1), the differential equation is of the form

1 1 ce 1 Uy

oo b e be Uy

[T DN .. w2 =0,

wy Mz e ur U,
where
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al
U,=( l)l(a—t—l (uy +u)

-1 n w
T D)y et 28 ux>. 4.2)

m=0 =1 atm

The simplest exponential kernel is the case of n = 1.
This case, though simple, illustrates many points
which may be of more general validity. For this case,
the original linear equation becomes

[u, + u,], + pu, + (u— v)u, = 0. 4.3)
Thus the original differentio-integral equation is
equivalent to the differential equation (4.2). In par-
ticular, if y = v, then (4.2) can be integrated imme-
diately once to yield

uy +u, + plu—uylx)] = 0. 4.4)
Equation (4. 3) may be solved by the method of Lap-
lace transformation to give

F(z,t) = ev#{H(t — 2)H(z)e )2
x [vIg@Vv(p— v)z(t — 2)) +Vv(p— v)z/(t — z)
><Il(2\/v(u~1/)z(t—z))]+6(t—z)}. (4.5)

Hence

ulw, t) =ugle — t)e
+f0t dzug(x — 2) et (pr2vlz
x [vIo@VV(p— )zt — 2)) +Vv(u— v)z/(t — 2).
X I, @Vv(n— vzt — 2))]. {4.6)

For the particular case v = p, the solution reduces to
ule, 1) = ugle — e st + g jof uylx — z)e-nz,

Thus the first term represents the decay of the wave-
packet, while the second term represents the smear-
ing-out effect of the relaxation.

Now, let us study specifically the small time and
large time behavior of the solution (4. 6).

(i) Small time behavior: We obtain from (4. 6) by
straightforward Taylor expansion

ulx, t) = uylx) — tuplx) + 0(t2).

Thus, the behavior is essentially governed by the
wave operator, since there is not sufficient time for
the relaxation mechanism to take effect.

(ii) Large time behavior: Making use of the asympto-
tic expansion of Bessel function, we may obtain from
integration by parts that,for p > v> 0,

u(x’ t) ~ uo(x — t) e vt
v expl— (u— )t + 2[v(u— v)ix]1/2}

VT [v(p— v)E]1/4
1
O\ R
where (b(n) — n1/2u0(x _ n2)e(}l‘2v) T|2.
If #§”(0) # 0, but u(()m)(o) = 0 for m < n,then

¢ (n) (\/;) [
n=0 [4v(p— v)t]n+1/2]
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ule, ) ~ woly — et T T T

On the other hand, if 0 > 0,v< 0,or v> p > 0, then
we obtain

v — r gy hntd (n) (0) exp{—(u— V)t + (u— 2v)x + 2[v(u— V)tx]l/z}
[4v(u— v)t]m1y2 4.7
{
Then Eq. (5. 3) will be satisfied if
avo
2v e-(u-v)t an ~0, 6.6

wu(x, t) ~ ugle — t)evé +

7172 [p(u — v)t]1/4

<E ¢n(Vx )eos{2[v(n — V)Ix]V/2 + (4n — 3}
[41/(“ - V)t]n**l/z

T + %) Y7(0)cosznm

[4v(p — v)]r+1/2

+ 2
w0 }’l'

where () = n1/2 ¢(n).

In particular, if #,(0) = 0, then

2y 1

7172 [v(p — v)i]i/3
x4 (0)e ot w2 cos{2[v(p — v)ix]/2 —

[4v(u— v)E]1/2

ux, ) ~ ugly — t)e vt +

3t
(4. 8)

For finite x, the first term retained in (4. 7) and (4. 8)
is in fact zero for ¢ large enough, since we have
assumed at the outset that u#,(x) is nonvanishing only
in a finite interval. However, this term clearly shows
that #(x, ¢{) will be exponentially large at x ~ £ for
large (,if v> 0. The amplitude of u#(x, ¢) also becomes
exponentially large for the case v> pu,as may be
seen from (4. 8). These two cases are unstable. In-
deed, they violate the stability condition established
by Whitham.5 Therefore, the only physically meaning-
ful case is the case p > v > 0, which appropriately
represents a mechanism of relaxation.

For the particular case of 1 = v, we obtain

ulx, t) ~ fo" uylx —z)em?dz  ast— o, x finite;

hence u is independent of £.

5. SOLUTION BY ITERATION EXPANSION
‘For the general linear equation

ou ou t .
—+—=[u - 71)f(r)dT
at  ox ‘/0 i

a convergent iteration expansion can be established.
To do this, let us introduce new variabies (§,7) such
that

gz’v;ty

(5.1)

n= t7 (5-2)

also let us define v(£,n) = u(¢ + n,n), then Eq. (5. 1)
becomes

ov

OV 2 [Eu(s, g+ 0 — 8)/(s — £)ds, (5.3)
on o0& ¢
and the initial condition becomes
v(E,0) = up(é). (5.4)
Let us now formally write
o0
v(E,n) = n@ovn(é,n). (5.5)

)[1 + o2,

f“”

s, & +n—s)f(s— t)ds = F,(¢,m),
(5.7)

37}
n=1,

and if the expansion (5. 5) is uniformly convergent.

Now it can be shown that if | f @ ()| < M for all ¢ and
n and luo(x) = U,where M and U are two constants,
then the series (5.5) is uniformly convergent for any
finite 7.

To prove this, we observe from (5.7) that F, (£,71) is
majorized by the following expression:

n n+m-1
IF,,(E,U)IS ”zz:oanmm for all g,
where
ajo=20M, a,,= ; UM(3M)=-1  other n,m = 0.

Now in the series on the right-hand side of the follow-
ing inequality:

SRl 25 25 a,,

n=0 n=0 m=0

nnﬂrz-l
(0 +m — 1)1

there are (# + 2)/2 or (n + 3)/2 terms of 7% /n!. The
coefficient of each term is smaller than MU (3 M)~ if

3M is chosen to be larger than 1. Therefore, the co-

efficient of 7 will be less than MU(3 M)~ /(n— 1)! for
n > 1. Hence the series 7| F, (£,m)| is convergent.
A direct integration of Eq. (5.7) leads to the conver-

gence of En o U, (£,m) also. This expansion converges
rapidly if the relaxatmn kernel f is small.

6. LARGE TIME SOLUTION

The behavior of the solution (3. 6) for ¢ large can be
viewed from two directions. One is the solution for
t — «, keeping x finite. The other is the behavior of
the main disturbance as { & «. The latter is often
physically more significant.

The behavior of the solution for ¢ — «, while keeping
x finite, may be studied in a similar approach as we
did in Sec.4. Without loss of generahty, we can take

uy(x) to be nonvanishing only in the interval (0, xg).
Then the solution (3. 6) can be written as

ulx,t) = [Fugl —2)F(z,t)dz, fort=x. (6.1)

Therefore, for any finite x, z is always small in com-
parison with £, when ¢ is large enough. Hence in (6. 1),
we can evaluate the asymptotic expression of F(z,1)
for ¢ large by treating z as a finite parameter. To do
this, let us write 4(s) =1 — (s) and let the X, 's be
the zeros of k(s), i.e. k()\ ) =

Letusorder)\ =a; + b, byao_alzazz
Assume 1/h (s) can {)e expanded in the nelghborhood
of s =X, with

o]

[R(s)]71 = Z)

2 (8 —Ag)r 1.
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Then the asymptotic expression of F(z,{) may be
obtained by a similar approach as given in Carslaw
and Jaeger.6 It is found that when oA is not real
and positive,

ei@ayzi-1/4)+26

) )
1)zl zmaoxozt)l/(é )

where the branch of Vahq = a —ib, b > 0 is chosen.
When a ), is real and positive, take a = | Vaxyl;it
is found that

F(z, )~ agexp[hyt — (ag + Aga

F(z, 1)~ ag explrgt — (ag + Agoq)2]

cos(@Vagrhgrf — 1/4)

.3
Frtaggznia - &Y

The asymptotic expression of u{x, ¢) for large { may
be obtained in a manner similar to that of Sec.4. Let

oM) = n1/2uy(x —n2) exp[— (ag + xgaM?],
y(m) =n2¢0(m);

then, the asymptotic expression of u(x,t) is given by
the leading term of the following expansion:

oy exotezo\/ﬁei(za\/z-n/z;)

VT (aghot) /4

x <Z;0 8 6F) aghot) 1721 + O1/2)
_ag exp(yf) expi@Vaghoxt — 1/4)]

G (gt o)1/

X Z}o ¢n(&_)[4010;\01]—(;1&)/2}[1 + 0(;-1/2)]

U, )~

for Vaghe = a —ib, b>0, (6. 4)
and
ulx, t)
. 1 .
Nz_agexot D ‘P(n)\/;cos[Z aghgxt + (5n — 7
v =0 (4a0)\0t)(n+1)/2
— T+ 3)y®(0) cosznm
+ 2 2)Y > [1+ 0(t1/2)]
n=0 n 1 (daghyt) i1r2

for vary > 0 real.

From these asymptotic expansions, we can conclude
that the stability of the system is governed by the
sign of the real part of A,. From the definition of A,
we can then establish the following stability criterion
for positive kernels: The solution is stable if

fo"° fiHdt < 1.

To prove the last statement, we note that for positive
kernels i.e.,f(f) = 0 for all / = 0, the function

F(s) = [& e sf(t)dt is a monotonously decreasing
function of s for real s. Hence, there always exists a
real s, such that Jf(sg) = 1. Furthermore, s, < 0 if
and only if §§° f(Hdt < 1. If we can further identify
5, to be A, then our proof is complete.

(6.5)

(6.6)

Let us take any A; = a; + b, such that a;> sg; then
Fogy = [T et it fat
and
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IRe F0)=1J"e* cosb fyat | = [ " e i fyae < 1.

Therefore,f(hj) = 0 is possible only if a; =< s,.

We may also notice that f’ (ry) is real and negative;
hence a is real and positive. Thus the stable solu-
tion is represented by Eq. (6. 4) with a = 0.

Very often we are more interested in the lasting
main disturbance after the passing of some initial
time interval. The main disturbance will then propa-
gate not with the speed 1 as determined by the real
characteristics of the problem, but with some other
speed less than 1. This is equivalent to finding the
asymptotic expression of (3. 6) for large f and x, with
the parameter x/f kept fixed.

Let us rewrite (3.6) as

ulx, ) = fO]F(ty, Bugly — ty)t dy (6.7)
where -

Fty, t) = (1/2m1) [{et»09/[1 — f(s)]}ds,
and ¢

w(y,s)=s—y s/[1—fs))=s—ygls). (6.8)

The asymptotic expression for large ¢ then can be
obtained by the method of steepest descent. For the
asymptotic expression of F(ty,t), let a saddle point be

§ = kl(y):

which is obtained from

ow

— =1—-yg'(s)=0. (6.9)
s
Then, this contribution to F(iy, {) is
iy 1/2
B0~ S T oh T e o
i1 —_ 2" (s)| . _
! B8 s-mod (g 10)

where J(y) = w(y, 24 (v)), and y; is some real constant
arising from the possible deformation of the contour.

Substituting (6. 10) into (6. 7), we can once more per-
form the integration by the method of the steepest
descent. Via (6. 8) and (6. 9), it may be shown3 that,
from dJ/dy = 0,the saddle point is given by &, (y) = 0,
or

Yo = 1/2'(0) = 1/[1 — f(0)]. (6.11)
Moreover, at this saddle point,

d2d _ g'(0)° (6.12)

dy2  g"(0)

Let us confine our problem to stable positive kernels
so that

A0) = [ f)at <1

then both g’(0) and g”(0) are real, and we have
0 < y,< 1. With these observations, it is then found3
that

u(x, ) ~uglx — (1 —c)t] ast— o, (6.13)
where
c= [ it)t. (6.14)

Thus we may conclude that the lasting main distur-

bance will propagate with a speed reduced from the
real characteristic speed by an amount ¢, and retain-
ing essentially the initial shape, if f(¢) = 0 and
fdat =c< 1.
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As an example, let us consider the case

At = vie it 4 peret

Then

(6.15)

C = Vl/lil + Vz/lvlzv
l—c= (1/.’11/—‘2)(11-1“2 — ViHg — Volhq)s
therefore,

ulx,t) ~ uo[x — U/ pqpo g — Vily — Vzﬁl)t],
ast—> o, (6.16)
if
vi/ly + v/ <1 or
(1/pqpg) (Hqtg — vitg — vou) < 1, (6.17)

Yy, thq, Vg, Uy all positive.

Now for f(¢) given by (6. 15), the equation
w, + U, — fotux(t, TV f{t — 1)dT = 0.

can be transformed, by successive differentiation,
into the following differential equation:

[, + ]y + (g + 1)

[ + [(y + pg — vy — vo)/ (g + py)lu],
+ uﬂiz[“t + [(“1“2 — MqiVy — Vgﬂl)/ulp-z]ux]
=0, (6.18)

An intuitive approach will lead us to conclude that,
for large ¢, the main disturbance will be governed by
the lowest order terms in Eq. (6. 18):

+ [(uqtg — Bqvy — vouq)/uqtglu, =0, (6.19)
which will yield the solution (6.16). The condition
(6.17) is essentially that the characteristic direction
of Eq. (6. 19) should lie between the characteristic
directions of the higher order terms, an extension of
Whitham's result.5 We may note that the asymptotic
solution (6. 13) can also be applied to rapidly decay-
ing kernels. For instance, take

S(t) = f(0)ennt,

where %#(7) is a monotonously increasing function of

T, #(0) = 0, 2/(0) = 1, and u is a large parameter. In
this case time is scaled by 1/y. Therefore, when

is large, any finite / will correspond to asymptotically
large time on this relevant scale.

7. THE NONLINEAR EQUATION

Let us consider now the nonlinear equation (2. 1),

u, + (1 + uk f + wu, St — T)T

o fo wit = DT+ 5 = [fefe =T, (1.1)
X

with the initial condition

u(x,0) = uylx). (7.2)
It is clear,from our knowledge about the nonlinear
partial differential equation without the integral term,
that a solution may not exist for all > 0, even with

1773

uy(x), which is continuously differentiable to any de-
sired order, because shocks may appear.

The natural way to deal with (7.1) is to make use of
the characteristic coordinate. Let us introduce the
set of new variables (¢,7),

£ =¢E@x,1), (7.3)

n= If, (74)
such that

% =(1+wu), oné&(,t)=const, (7.5)
or

g+ (L +u), =0. (7.6)
Thus, Eq. (7.1) can be rewritten as
2—;‘ <f{ x(&,m), 7] + 3 u2[x(g,m), }f(n—r)dr>

:gxi f {u[x(ﬁ,n),"l—ﬂ
3 uz[ & m,n— 1t f(nd (7.7

For the linear case, we have £ =x — ¢; then (7.7)
becomes identical with (5. 3). With initial data pres-
cribed, we can attempt to integrate step by step Eq.
(7.7). The integration process, however, may not in
general be carried on indefinitely. On the one hand,
the nonlinear term in the integral may cause diver-
gence in the expansion for large enough 7. On the
other hand, the characteristics given by (7.5) may
intersect and multiple-valued solution, or shock, will
appear. It is, however, also possible that the relaxa-
tion terms in the integral may help preventing the
characteristics from intersecting with each other,
which would otherwise intersect if there is no relaxa-
tion.

The nonlinearity enters both in the characteristic
equation and the integral. Even when the nonlinearity
is present only in the integral, whether an iteration
procedure similar to that presented in Sec.5 can be
carried out for any finite ¢ is not certain. To explore
along this direction, let us consider the following
equation:

u, +u, :fota +uu, f(t — 7)dr. (7.8)
This implies

Ex, ) =x —~ 1.
Now, as in Sec. 5, denote

v(&,m) = u(§ +n,n);
then Eq. (7. 7) becomes
aa_nv = %fggm[v(s,g +n —s)

+302(s, &+ —9)]f(s — £)ds.  (1.9)

Let us now try to solve (7. 9) by an iteration proce-
dure,i.e.,

v = lim v _UO+E(U —v,.q)
n >0

Hence, we obtain from (7. 9)
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v
=0, (7.10)
on
v 3
577" = a_g'j;m[vn—l(syg + n- S)
+ 302 (s, +n—3)|f(s—¥&)ds, (1.11)
or, with the definition v_; = 0,
a(vn_ Un—l) 0 £+
T &fo v, 1 —v,p + 202,
— 302 ol pen-of (S — Edds, m=1. (1.12)
The initial conditions are
v,(,00)—v, 4(£,0) =0, all &. (7.13)

Now let us consider only the domain such that |v,| <
N for alln,i.e., consider only for those n < 5, such
that |v,(¢£,7)| =N. Let max luy(x)| = U, and
|F® ())<= M for all f andn. Tt is possible® to obtain
a rough estimate from (12) that this iteration proce-
dure can be carried out for all  such that
S+ N)YMn e3W™Mn < N/U,,. (7.14)
Although we have only established the sufficient con-
dition for the existence of the solution of Eq. (7. 8),
these results indicate that the iteration procedure
may not in general be carried out indefinitely. At
certain n = 7y, this procedure may break down.

8. A PARTICULAR EXPONENTIAL KERNEL
Let us consider the case that f{(t) = e #¢. Then Eq.
(7.1) becomes

u, + (1 +uu, =p fot(l +u)u, e rEndr,. (8.1)

Differentiate (8, 1) with respect to {, and, using the
initial condition, we obtain

u, + (1 + wu, + pu = puy). (8.2)

Let us introduce the variable (£,7) as in Sec. 7; then
Eq. (8.2) becomes

ou

o+ pu = puglx(E. )], (8.3)

a7
where

% _(1+w, E=g6b, n=t (8.4)

an
and we can assign the initial condition as

x(£,0)=§. (8.5)
Equation (8.4) can be integrated, and we obtain
w(t,m) = ug(E)e=nn + pe=sn [lesTu [ x(€, T)}dr.  (8.6)
Thus
9 _ 1 + ug(E)e™wn + pe#n f(;’el“' uolx (¢, 7)ldr.  (8.7)
an
Hence

uo(g) ~
x(,m) =& +m+-—7 (1 —e-#n)
+ U f(;’ds gks fosei”uo[x(g, dr. (8.8)
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Shock will appear as soon as the characteristics will
intersect, i.e., when

x(§,m) =x(§;,n), for any pair of £; and §;,

or when
0x
2 -0, 8.9
y (8.9)
From (8. 8), we obtain
ox =1+ 1 (1 — e #)ug(§)
0& u

+u fo"dse'us foseuf uplx (&, 1)) z—: (§,7)dr.  (8.10)

When there is no relaxation effect,i.e., when u — 0,
we have

ox

22— 1+ nul(£). 8.11

Y n 0(‘5) ( )
Thus, the criterion (8.9) means

n =— 1/up(é). (8.12)

Hence shock will appear near the characteristic
¢ =&, ,where up(£) is minimum, and it will occur at
t=n=1/—uy£,). (8.13)
For this case, we see that so long as there exists
some §,, where u((£,) < 0, then shock will appear
sooner or later. Since for any pulse of finite duration
up(§) cannot be always positive, we expect that there
will eventually be a shock.

When the relaxation effect is present, whether there
will be shock or not at all depends very much on the
magnitude of u,z,(§,,) and the length of the pulse.

Again consider the case that the length of the pulse is
finite. Assume

forx< Oandx> [,

for 0<x < [,

uo(x) =0,
uyx) = 0,

Also let max ufp(x) = my > 0,and min ug{x)=m, <O0.

Let us take M to be the least upper bound of |9x/3¢].
The existence of an upper bound of |3x/34| can be
established if m , is small enough. From (8.10),a
sufficient condition3 can be found to be

m/p)ert— 1)< 1.

Then, it can be derived from Eq. (8. 10) that no shock
will appear if

(1—esnymy/pu<1/[1+ M(et! — 1)] (8.14)
The condition (8. 14) is only a sufficient condition;
better conditions can, of course, be obtained if we
know more about the shape of the initial pulse. How-
ever, it clearly demonstrates that the formation of
shock will depend not only on the maximum slope of
the pulse but also on the length of the pulse, and, when

my/u< 1/[1 +M(ert — 1)], (8. 15)

no shock will appear at all.
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9. THE EXPONENTIAL KERNEL f (f) = vebt;
WEAK NONLINEARITY

For the case f(t) = ve~*t Eq.(7.1) becomes
u, + 1+ wu, = Vfot (1 +u)u, ent-tigr. (9.1)
Differentiate (9. 1) with respect to ¢; we obtain

[u, + A +u)u,], =~ u{u, + [(p—v)/u] 1+ u)ux}.
(9.2)

Equation (9. 2) also belongs to the category that has
been discussed by Whitham.5 Thus, when &> v > 0,
the main disturbance will be associated with the
lower-order terms;i.e., as far as the main distur-
bance is concerned, we have approximately

wy + [(n— v)/u] (1 + wyu, = 0. (9.3)
The shock associated with (9. 3) will be smoothed out
by the higher-order terms. The real shock of the
problem, if they exist, of course, is still associated
with the higher-order terms, and they will in general
be damped by the lower-order terms. The lower-
order terms may also modify the higher-order terms
to such an extent that the real shocks will not form at
all.

If we integrate (9.2) with respect to ¢, we obtain

u, + 1+ w)u, =— plu—uyk)]
— (=) _g(l + u)u, dT.

From (9.1) and (9. 4), we obtain

(9.4)

plu — ugx)] = jg(l +u)u [ve r¢-0) — (n — v)dr.

(9. 5)
Thus, for g > v, we obtain
¢
u—uo(x)%—fo(1+u)ux dar . (9. 6)
Then
u, =— (1 + u)u,. (9.7)

Hence the relaxation effect is minimal. Also the
lower-order equation (9. 3) is essentially the same as
9.7).

When o — v << 1, as far as the higher-order terms
and the real shocks are concerned, the results from
Sec. 8 may apply essentially. On the other hand, the
main disturbance will be propagated with the slow
speed [(pn — v)/1] (1 + ) as given by (9. 3).

For weakly nonlinear cases, a perturbation iteration
scheme can be devised. Take (7.5) and (7. 7):

‘;—9; = (1+u), onké&,t)= const, (9.8)
and
d a
S ol = ¢, Efon{u[x(é,n),n — 7]
+ g ullx(g,n),n — rlif(n)dr. (9.9
In (9. 8), we shall first take # = 0 and obtain
Ei=x—1, x=¢§& +1. (9.10)

Then in (9. 9) we shall try to solve the linear equation
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on g3 9.11)
From (9.11) we obtain

uy =u(§y +n,mM=v.(84,m). (9.12)

Then substitute u, for « in (9. 8);i.e., we shall solve

ox

Z=1+v,(&,m), (9.13)
an

and obtain £ as function of (x, /), which we call &, (xr, ),
ie.,

£y =E,(x,8) or x=x(,,n). (9. 14)
Then we write (9.7) as
vy (Ey,m)  dus[x(E5,m). 7]
an on
= %3 a% o ealx g, m),m — 7]
+ 3 ullx(Ep,m),n — T (dr,  (9.15)

which we can integrate right away to obtain v,(£,, 7).
So the process continues. Namely, we have

v, _ 9§, @

— T‘ ——
an - ax agﬂ f(\){unvl[x(gnyn))n T]

+h2 e, 0 — )7 (nar (9.16

to obtain v, (£,,7), which is « [x(£,,7),n]. Then solve

a_x = 1 + Un(§n+1,77) (9‘ 17)
o

to obtain
X = x(§n+1sn) or £n+1 = £n+1(x’ t)' (9' 18)

Then we have the equation for u,,; like (9. 16) with»
replaced by n + 1.

For weakly nonlinear case, we hope to obtain good
approximation with only one or two steps. In particu-
lar,x = x(gz,n) should give us much information
about whether and when the shock will develop. As an
example let us consider the case of f(t) = vert,

For this case, we have from (4. 6)
_ t (=1 £+ (e
u(x, t) = uglx — tye ™ + fodz uglv — z)e )t (p-2v)a

x [vly@Vr(p — )zt — 2)) + Ve(u — V) 2/t — z)
x11(2\/1/(u — vzt - z))].

Or

up(€q,m =uglEy)em
+ fldz ug(Ey + 1 — z)e(metuze)
x [vIo@Vv(u— v)zn —z)) + Vv(u — v)2/0 — 2)
X 11(2\/1/(;1 — vz — 2))]

uglEy) e + [ldz F(gy,m,2).

il

(9.19)

Thus from

0
o1+ u &),
an
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we obtain to the second approximation that, since the
initial condition is chosen such that x(£, 0) = &,

“©® 1} om

+ [dr [T FE,T,2)dz.

x(E M) =n+E&+

Notice that

rar [Taz Fg,7,2) = ["az ["ar F(g,7,2)

7 -
= J'az [T @&y + 2,2)a.
Hence we obtain

M&M—n+€+°@( — e7vn)

+ Jdz [T dyug(s + y)e
X [vIo@Vv(p — v)yz) + Vu(p — v)z/y

—vz-(u-uv)y

x 1, @VE < 1)72)). (9.20)
Thus
Z_: _ wo(£) (1— emm)
+ [o dz ez []7Fdy up(c+y) e
x [vIg@2Vv(p — v)yz) + Vu(u — v)z/y
X 1;2Vv(u — v) yz)] (9.21)

Again, when 0x /3£ = 0, the characteristics will inter-
sect and shock will form. We may note that in (8.10),
if we also make the approximation that

xEm~E+m,
then it can also be written as

a_x =1+ 1 (1— e‘un)ub(g)

a¢ o
+ufndze‘ﬂzf"

which is identical to what we would obtain from (9.21)
if we set u = v.

o +y)ay, (9.22)

From (22), we have

ox 1
X142 (1 — enm)up(E)
& M 0

+ i _()" dz e P2 ug(é + n—2) —ug(é)].  (9.23)

x=0 XS
FIG. 1
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For an initial pulse of finite duration like that shown

in the Fig. 1. The greatest negative contribution from

the second and third term in (9.23) occurs when

n — «, and since u,(x) is zero for x > x,. We obtain,

for the most critical case,
9x _ 1+ 1 up (&) — uy(£).
0 u

Thus, so long as

1> ug(E) — (1/wup(s),

for any &, the shock will not form. The most critical
¢ is given by

up(§) — (1/mug(é) = 0,

which lies between the maximum and the point of in-
flection of uy(§).

(9.24)

(9.25)

If 1 is a large parameter, more can be said about

(9.21). Rewrite (9.21) in the form

ox upn (&

o ()

0§ Voo
+f0nd7' deZ th@ + 7 — z)e‘(E-U)T+(;1~2u)z

(1 —ewm)

X[vIg@Vv(n — v)z(t —2)) + Yu(n — v)z/(1 — 2)

X1,2Vv(u — v)z(r — 2))]. (9.26)

Using the asymptotic expansion of I, (x), we obtain for
large u

dx N ugy(£)

— Vv
—~1+27 0 ”")+f"d7u<§+7—ﬁ———7>
0§ U
o(&) ut‘ < v >
=1 1—evn)+—ju + — — U .
> ( ) L | Yo 3 m n ol8)
(9.27)
Hence the most critical case will be when
0 1
Xt =y (8) — 2 ug(8). (9.28)
o0& v v

The similarity between Eqgs. (9.28) and (9. 24) is worth
noting.

Our study of the interaction between the nonlinearity
and relaxation on the propagation of a simple wave is
far from complete. However, it is clear that the
effect of relaxation is distinct from that of ordinary
dissipation. When the dissipation mechanism is also
explicitly taken into account, whether the relaxation
effect would then be completely overshadowed by the
dissipation is the next question worth studying.
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In this article, we derive the balance laws and constitutive equations of polarized elastic solids with electronic
spin by use of a relativistic (special) variational principle. The theory is fully dynamical and nonlinear. It is
shown that this approach encompasses several previous works in micromagnetism (magnetoelastic interactions)

and elastic dielectric theory.
1. INTRODUCTION

The peculiar form of the electromagnetic equations is
definitively linked to the property of invariance under
the Lorentz group. The special relativistic treatment
assures of the good transformation properties of
electromagnetic quantities. In Ref. 1 we have shown
that the correct definition of the ponderomotive force
acting upon a magnetized medium follows from the
relativistic covariant formulation. For instance, if we
examine the theories of deformable dielectrics de-
veloped during the last decade (cf. Toupin,2 Eringen,3
Toupin,? Dixon and Eringen,5 and Grot and Eringen®),
the fully satisfying one is that of Ref. 6, which em-
ploys the smallest number of hypotheses (practically
only the Maxwell's equations written in four-dimen-
sional formalism).

In the preceding article we tried to develop a theory
of deformable magnetized materials in which account
was taken of the electronic spin and the associated
effects. However, to avoid cumbersome algebra, the
theory developed was restricted to the case of quasi-
magnetostatics, which forbids the large material velo-
cities and fast propagations of discontinuities. The
next step is to develop a fully dynamical theory in
which both the magnetization and the polarization are
taken into account. Thus there is need for a synthe-
sized theory of both fields (deformable dielectrics
and deformable magnetized bodies with electronic

spin).

It is well known that a rigorous theory of magnetized
and polarized media can only be achieved in the
realm of special relativity theory. Indeed it is neces-
sary to consider both magnetization and polarization.
For instance, consider the transformation formulas
for the magnetization M and the polarization P for a
Lorentz mapping A(v) (cf. Anderson7):

P =[P+ (1/c)v XM + (v/02)v*P(y1 —1)],

M’ =M — (1/c)v X P + (v/02)v*M(y "1 — 1)],
where

y=(1~— vz/cz)—l/z .

The second equation tells us that a polarized moving
body will appear to be magnetized. This is not sur-
prising since moving charge distributions produce
currents. What is more surprising is that a magne-
tized moving body will appear to be electrically
polarized. Unfortunately few observable conclusions
can be drawn due to the difficulty of obtaining suffic-
iently high velocities for material media. Of course,
for practical calculations, one only needs the equa-
tions which may be deduced from the relativistic ones
in the rest frame to within terms of the magnitude of
1/c2,

In this article we give a variational principle for non-
dissipative polarized and magnetized materials whose
material points are equipped with electronic spins.
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The present work generalizes works of Frenkel,8
Taub,9 Halbwachs, 10 Grot and Eringen,® Grot,11 and
Sedov!Z to include the electronic spin and a properly
invariant theory of nonlinear solids. It encompasses
the nonrelativistic works of Toupin,!3 Tiersten,14
Brown,!% and Maugin and Eringen.! The special re-
lativistic treatment assures the correct transforma-
tion propertiés essential to electromagnetic fields
while giving the nonrelativistic theory in the limit of
small velocities. The complete set of field equations
and related jump conditions are obtained and thermo-
dynamics is given. By use of Lagrange's multipliers,
certain constraints are duly included. The constitu-
tive equations for the nondissipative electro-elastic
solids are obtained. A reduced form following the
application of the objectivity requirement is given and
nonrelativistic limits are deduced.

The bases of our attempt are:

(i) a four-dimensional (Minkowskian) treatment,

(ii) a variational principle (Lagrangian) as a starting
point,

(iii) an invariance (Lorentzian) requirement.

Our final goal is a dynamical theory of deformable
polarized and magnetized media. The body is not
necessarily saturated (as in Refs. 1 and 16), but we
may have a variable magnetization amplitude in space
and time.

2. KINEMATICS17 IN V4

Consider the four-dimensional manifold V4 of Minkow-
ski equipped with a hyperbolic normal metric of
signature (+, +, +,—). In an inertial frame, the

square of an arc length is given by:

(ds)2 = (dx)2 + (dy)2 + (dz)2 — c2(dt)? = b zdz>dz®,
(2.1)

where

(21,22,23’24):(x,y’2, ZCt)’ iz’\/_l

Here, (x,, z) are rectangular coordinates, { is the

time, ¢ is the velocity of light in vacuum, and 0,5 is

the Kronecker symbol. Greek indices are assumed to

take the values, 1, 2, 3, 4 and Latin indices (small or

capital) the values 1,2, 3. The proper time 7 of an in-

finitesimal element of continuum is defined by

(d1)2 = — (ds)2/c2. (2.2)
In curvilinear coordinates, (2. 1) reads
ds? = g gdxodx®, (2.3)

where g, is the metric tensor with signature (+, +
+,—) and g°# is its reciprocal given by

b

8,8 % = 08]. (2.4)
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The motion of a continuous medium in V4 is describ-
ed by the set of relations

X% = xoc(XA)’

X8 = (XX, 7),

a=1,2,3,4,
A=1,2,3,4,

(2.5)
K=1,2,3,

where XX are the Lagrangian coordinates of a mater-
ial particle in E3 and 7 is 2 monotonically increasing
timelike parameter along the world line (€) of a par-
ticle in V4, defined by (2. 2).

The 4-velocity and 4-acceleration are respectively
defined by:

u*=-"— and u4*= 92xc
ot 072

(2.6)

It is not difficult to show that the operator 3/97 gen-
eralizes the notion of material derivative so that we
can write

0A

o
where v, (or sometimes an index following a semi-
colon, e.g., A;.,) denotes the covariant partial deri-
vative with respect to x®. The modulus of the 4-
velocity is constant, i.e.,

:A:u"‘VaA, (2' 7)

8oputul =~ c2, (2.8)
In an inertial frame, we write
ue = ("/(1 — B2 ic/(1 — g2)1/2), B = |vl/c.
(2.9)

In a rest frame (inertial frame in which v* = 0 at z %),

we have
Uk;l - Z.IJA/C
0 0

(2.10)
The motion (5) is postulated to be invertible so that

ae=(9%,0), u_ ., =

ue = (0, ic), -

XE = XE(x), 7=T(x%); (2.11)
thus the following quantities are well-defined:
o ox% K X% =57
xa'K—aXK’ oo T axa, ‘x——axo(. (2.12)
It is easily shown (Kafadar and Eringen!7) that
K
XKxPLzﬁKL, —aL: ’ BL:XKMP:O,
v axx o (213

I K _ o4 [0
X XTA=0 —u'T,.

In the sequel we need the projeclion opervator used
extensively in the literature. Let V3 be the hypersur-
face orthogonal to the world line () of a particle at
the point M of the particle history in V4. Clearly,
every vector A such that A« C V3 is spacelike. Any
tensorial quantity associated with a point M in the
Minkowski manifold may be projected onto V3 by use
of the projector P defined by 18-20

Pog =6g+ c 2uouy, P, =3. (2.14)
For instance, any 4-vector F* may be decomposed in
a unique way into a 4-vector f* C V.2 and a compon-

ent parallel to the 4-velocity2!
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Fo=foa4 yof, (2.15)
where
fa=PeFB,  f=—c2F%u,.
It may be verified that
Seu, =0, (2.16a)
Peg(ubf) = 0. (2. 16b)

A 4-vector satisfying (2. 16a) is said to be in V3 and

a 4-vector satisfying (2. 16b) is parallel to the 4-velo-

city. A 4-vector B® C V3 satisfies the identity
P BB = Be, (2.17)

The projector defined by (2. 14) has two important
properties:

(2.18)
(2.19)

PQBPBy = P, (idempotence),

Pegyb =0 (PeC V3).
Given a 4-vector A%, the relation A®xu, = 0 assures
that, in a rest frame, A® reduces to A« = (A%, 0).

The deformation field: Using the projector, we can
form the so-called direct gradient of the deformation
field,

X% = Pogxb ) u x9y, =0, (2.20)
that reduces to the classical gradient x* , in a rest
frame. Using (2. 20), we see that (2. 13d) reads
x4 XE = Poy, (2.21)
Thus X%  will be called the inverse deformation
gradient. The relativistic Green and Cauchy deform-
ation tensors and their inverses are defined accord-
ing to the relations:
Ckr = BupX®,kXP, G = G XX XU,
1 4 (2.22)
CMN — g‘*ﬁXMaXNB, CBA = GKprKx}\L'
Finally we recall some useful expressions (cf. Grot
and Eringen® and Kafadar and Eringen!7:

0 0
57X K=~ XEqub, b = ub,xr (2.23)
E%fx#K = (uky + cZukfy)xty, (2.24)
T, = (6ic) L€ g, X g X P L XY e KEM, (2.25)
and
J = (6ic)‘1eaﬁwx°‘,Kx5,Lx7’Mu#eKLM (2.26)
is the Jacobian which satisfies the relations
W gue,, J=[det(CK)]12, (2.27)
If we set
* *
udy = Pouo,  dup = dip)» (2.28)

*
then d; represents the relativistic generalization of
the deformation rate tensor as can be verified by

*
2 Cpp = 2d 1o, (2. 29)
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Given a material body (B) of boundary (3B) in E3, we
shall call (®) the tube swept out by (B) in V4 as the
proper time increases and (0®) its boundary.

3. THE VARIATIONAL PRINCIPLE

The action: With any tube (®) C V4, of boundary
(0®) swept out by a material body (B) in the 4-dimen-
sional manifold of Minkowski V4 and with V4 itself,
we associate the following action:

A= (CB)[ép?ﬂl(u“ua + ¢2) + pa,S*Pug

- plp(XK,a ’ :ﬁaay HaﬁKa 6) - %WaBFBa]délv
+ fV4%FaBFﬁad4u, (3.1)
in which O is a Lagrange multiplier introduced to
take account of the constraint (2. 8) and @, are four
Lagrange multipliers introduced to take account of the
constraint
Sebuy =0, (3.2)
which is the so-called Frenkel condition. The con-
straint (3. 2) must hold for the following reason.

Given 7¢# the magnetization tensor (or polarization
tensor, or magneto-electric moment), it is supposed
that the internal angular momentum (or spin) of the
“particle” is linked to 7%® by the classical formula

meb = TS*h T =-—ge/2mgec, (3.3)
where S°# is the spin per unit volume, ¢ is the elec-
tric charge,m, is the rest mass of the electron, and
£ is a coupling constant (equal to 2 for electrons).
The quantity T is called the gyromagnetic ratio. In a
rest frame, the magnetization 3-vector M (an axial
vector) and the polarization (or electric moment) 3~
vector P (a polar vector) can be expressed as
Following the hypothesis of Uhlenbeck and Goudsmit,.
the moment is purely magnetic (i.e., P = 0) in the
rest frame of the electron. In covariant form this
assertion reads [cf. remark following Eq. (2. 19)]

mBuy = 0; (3.5)
hence (3.2). For a continuous medium built up of
electrons, in agreement with the definitions of Weyss-
enhoff,22 we write

Tob = pfob = pI'S=8, (3.6)
where, from here on, S8 is considered to be the spin
per unit of proper mass and p is the relativistic mass
density equal to the classical mass density of con-
tinuum mechanics in the rest frame.

In (3. 1), XK is the inverse deformation gradient and
F,, is the magnetlc flux tensor which, in an Euclidean

frame of reference, reads

F , % [dualB, — {E]. (3.7
The quantity 37 oF 82 is the energy of a doublet in a
magnetic field and 4F FBO‘ is the classical self-
energy of the magnetlc field. The quantity
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nmes, PEF pog pB e, xe (3. 8)

appearing in the argument of the expression of the
action (3. 1) represents the spin interaction of neigh-
boring points. This form assures the spacelike char-
acter and in a rest frame, it reduces to p+ , (where
p* is the magnetization 3 vector per unit mass)
Hence I1%8, is truly a quantity which generalizes the
gradient appearing in earlier works (Tiersten,14
Brown,15 and Ref.1). In ¢, the argument § is the
proper temperature measured in a rest frame.

Kinetic energy of spin: The most obvious four-
dimensional generalization of the quantities p and 86
of Ref. 1 are 78, a second-order skew-symmetric
tensor, and 6Q2°8, a second-order skew-symmetric
tensor representing an infinitesimal four-dimensional
rotation in V4. Therefore, following Frenkel8 in the
generalization of the classical mechanics counterpart
[formula (2.19) of Ref. 1], the term to be included in
the variational principle is of the form

oW = — f(&)%ps‘“ﬁﬁﬂﬂad‘lv = f(m)(l/zr)p%"‘ﬂﬁﬂﬁad‘lv.
(3.9)

The relations between 678 and §2%#, generalizing
(2.16) of Ref, 1, are given by
87, = 200,07

0, = — 0R5,, 0Q°Puy = 0.

(3.10)
We remark that 6Q2¢# and 67%8 are anhalonomic varia-

tions. Therefore the integrand of (3.9) does not re-
present an exact differential.

Bly?

Vaviational principle: Following the tradition of
Lagrange and Piola, we introduce indeterminate
multipliers for the basic arguments varied in the
Lagrangian in (®) and on (3®). Hence the proposed
variational principle is

0A + 6W + dW* = 0, (3.11)

where 6W is given by (3.9) and
* _ o, 4y

oW = f(&r)pf bx . dv f(am—r)

(1/c) DA d4v + f( r)(1/c)KwSABnadasr

T%bx,,d3s

(®-1)

= J. ppnB6din. (3.12)
In (3.12), f > is the 4-force due to nonelectromagnetic
causes, per unit mass,J* is the 4-volume current,
KB is the 4-surface current density prescribed on
the discontinuity hypersurface (I') which splits (®) in-
to two parts, T* is the stress 4-vector acting upon
(2®), 1 is the proper density of entropy per unit mass,
and n_ is the positive unit normal to (I'). A dot super-
posed on letters indicates partial differentiation with
respect to the proper time 7.

The variation is effected with respect to a parameter
A, i.e., we write

X% = x*(XK T,2), (3.13)

with A = A, a fixed value on the nonvaried particle
trajectory and A = Ay + 61 on the slightly changed
trajectory. Thus, for example,

J. Math, Phys., Vol. 13, No. 11, November 1972
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ox ¢
ox % = X XK o=y OA.
Henceforward the variations are carried out without
explicitly indicating the foregoing definition. We note
that the operators 6 and 9/0X¥ and 8/87 commute,
i.e.,

50 x) = (89) x, 0(¢) =080

Using this property, we find the following useful ex-
pressions:

0X% = —XK’p(éxP),.a, (3.14a)
du = (6x%),qub, (3. 14b)
op = — pPy(0x5),,, (3.14c)
6J = JOg(0xP).,,, (3. 14d)
85(¢.) = (6¢), — b,5(555),q, (3. 14e)

the last expression being valid for any arbitrary
tensor ¢.

We recall that F_ 4 is derivable from a 4-potential,
i.e.,

Foo = 2V, Ay, (3.15)
which satisfies the Maxwell's equations

e“ﬂNFN;B =0 in(®-T1), (3. 16a)

e"‘BN[FM]nﬁ =0 on(I). (3. 16b)

Equation (3. 15) is a constraint in the variational pro-
cess, therefore, we introduce the Weiss-gauge invar-
iant variation (cf.Grotl!)

—A

8A, = 0A, — A, 0x7. (3.17)

The variation deduced from (3. 16) and (3. 15) reads

8, = — 2BA (). + 2Fo(6x7).4:. (3.18)

Similarly the total variation of the temperature is
the sum of a proper variation 68 and of another one
due to the spatial dependence, i.e.,

56 = 86 + 86, (3.19)

The last term, following Taub,? may be expressed in
terms of a new variable © through the definition

DEF 0

56 = 5=(60) = (68),5u?; (3.20)
hence
56 = 56 + (60),4ub. (3.21)

The variations: In the sequel we need the follow-
ing expressions of variations:

a. Mass:
8(pd%v) = — plucug/c2)(6x"),, d*v. (3.22)

The proof of this follows by passing to the reference
frame (XX, 1), i.e.,

6(p dtv) = 6(pJdAV) = (Jbop + pbJ)d4V,
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Now use (3. 14c) and (3. 14d); this gives (3. 22).

b. Magnetization: We recall the variation

6% o = 209,17y, . (3.10)
Taking account of (3. 18) and (3. 10), we have
B(37 ,xF 8) = — MBFe (6x,).5 + T4B(3A,).
— pTF21S Pog
- %ﬂaBFBaPPO(Oxf’);P. (3.23)

c. Polarvizalion gradient: The potential ¥ depends
on 'ﬁYé;P only through I1%f,, Therefore, we set

v o= Paes) = §@Ee,), (3.24)
subject to the restrictions
3y Y
W N =y, a‘-l)i u? = 0. (3.25)
ip T P
Thus,
W .- -
pa;,'cxa N 5(170‘3,,7) =M 57 G(W“B;y), (3.26)
where the tensor defined by
y DEF _ 3Q
Mg’ = pa_EEKPP["‘POB]xYK (3.27)

will be called the “electromagnelic hypersiress
tensor.” It is subject to the restrictions

Mg tu* =0, Moptul =0, 9}2a57u7 =0, (3.28)

Now we carry out the variation of the action:
A = f(,@-r) <pfmu"‘147(6960();7 + pYucubc2(ox ).,

+ (2c)“2‘rrp0F"Pu"‘uﬁ((ma)’,‘3
+ pacub(oQ,, Sgv — 68 S,7)

oy
aXK,

+ pa SPut(dxg),, + p XK (6x8)

+ MBFe (bx,).5 — T%8(8A,)., + pTF S, 869 ¢
) “ -
—2pT - 50,78, + AFEe[(34,)., — (BA ),
T ya
— Fp(6x7),, + F,(6x7),]— p2¥ 56
¥B i yel 0% ;B] p’a'a

4
- pa—euB(GG);ﬁ> o+ [, LFeBSE, d4y

7 4
B f(%—r) M7 0(7 5, )0

+ [ B gF P02 (6xP),d%, (3.29)

We carry (3.29) into (3. 11) and write for various
product terms of the form

F(5G),, = (F6G),, — F,,0G.

Upon using (3. 10) and the generalized Green—-Gauss
theorem (see Eringen23), we obtain after some
lengthy manipulations
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— af o 4
f(m-r)(T .8 — Of 9)ox, dtv
oB —_ T 3
+ (am-r)([T |ng — T%)ox,d3s
- f(r)[TO‘B]nBGxad%r - fwtz)T“B;Béxad‘lv
+ f(’h‘- r)(GaB-B - c’lJ“)sAad‘lv
+ f(l_)([GaB]nB — ¢LK%Bn )5A , d3s
- oy -
+ aB 4y — X+ dad
f(V“.@)F ;804 % f(gB-r)<pag 17>66 v
CL2 4y _ CL 3
+ f(,@p)(’) s u > 60 d*y f(m_r)pae ubBn,60d7s
B
alp B 3 1,.&
X + SpSaB
* f(r) [p agu] 7500 d% - (.?l-r)gzps

+ placu? — aru®)S,® + JT(FYS, 8 — F81S, %)

Y -
— 2pT aﬁay 575 + 29)2%7;777“5&690(5(141)
— T B 3
(a&‘r)2‘)ﬁ“#71rp nyéﬂaﬁd s
+ f (20T B, 6Q5d% | = O, (3.30)

where we have defined the following quantities

T8 = pwuoub + poub — b + *JJEWBWU?O‘

in (®), (3.31)

+ TEeh
Teb = T8, in (V4 — @), (3.32)
w=M+yec2+ (20)‘277POF°P, (3.33)
p*=pa,Se, (3.34)
fpo=— pa—j?i—ﬁXK'“, (3. 35)
Tgk) = — Fe G + sF Fuged  in(®), (3.36)
TEBy = — Fo,FY8 + {F Fuged in (V4 —®), (3.37)

and used the definition of the electric displacemenl—
magnelic field inlensily G*#, given by

Gob = Fab — gab  ip (®B). (3.38)
Here 798 is the total stress—enevgy—-momentum
lensor, w is the density of energy per unit mass, p2 is
called the nonmechanical momenium 4-vector and
T2E, is the electromagnetic stress—energy—momen-
tum tensor introduced by Grot and Eringen.6 (See
also the Appendix of Ref. 1). They have shown that
this corresponds to an electromagnetic force f2 ,
through the relation:

723.%);3 = —f(gm) = — (nﬁypay:a + c-lJYFoty)’ (3.39)
where the last term
S = cdrEe, (3. 40)

is the Lorentz force and the first one is the force
arising from the presence of magnetization in matter.
One can show that this term is none other than the
Stern—Gevlach force used by Halbwachs.10 Indeed

1
77’B}/Focy:ﬁ = 57."[‘W(Focy:ﬁ - Faﬂ:7)
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from the skew-symmetry of 78Y, The set of Max-
well's equations (3. 16) may be written as

Foyie = Bayia ¥ Fapy (& —T)
hence
7TﬁyFocy:B = %(14737,% + FaB:y - F;cﬂ;y)ﬂﬁy = %pFSBYFéy;a,

(3. 41)

The definition (3. 35) corresponds to the expression
of the stress tensor due to the deformation field
according to Grot and Eringen.®

In writing (3. 30) we assumed that, across the discon-
tinuity hypersurface (T')

[6x2] = [6A%] = [66] = [0 ,5] = O. (3. 42)
The expression (3. 30) is posited to be valid for any
volume and any surface and for any variations 6x%,
66,060,064 ,,068,,in (B —I'),on (3@ — T) and on (T').
Hence we obtain the local field equations

Tes  =pfe in(® —T), T, =0 in(V:- @),
(3.43a)
[ToB]ng = T* on(3® —T), [T%8]ny;=0 on (L),
(3.43b)
Gab, = clJ%in(® —T), Feb =0 in(Vi-@Q),
(3. 44a)
[G*Blng = cT1K® = ¢1K*Bny;  on (T), (3. 44b)
0

n=—- a‘g, (3. 45a)
(pnuP)zs=pn=0 in(® —T), (3.45b)
pnubny =0 on (08 — T, (3. 45¢)
[onubln, =0 on (T), (3. 45d)
pSes = 2pTF (e S8 in (® — T), (3. 46)

MlaMT By, =0  on (3B — ),
[s))g[alyhlﬁyﬂ]]n)\ =0 on (D). (3.47)

In (3. 46), we have defined the effective electromag-
nelic field by

x 1 oy 2
For = Far + avur — amee) — 225 + 2 e,

‘” (3. 48)
which is a skew-symmetric second-order tensor.

Equations (3. 43) are Cauchy's laws of motion in
(@ — T),on (0B — I') and on (I'). Equations (3. 44) are
the Maxwell's equations in matter and vacuum which
must be supplemented with (3, 16), its jump across
(T"), and the conservation of charge equations:

Jo

=0 in(G-—T), (3. 492)

[7¢]n, =0 on (I). (3. 49b)
Equations (3. 45) are the definition of entropy and the
entropy conservation law for a nondissipative process.
Equation (3. 46) is the electronic spin equation that
generalizes previous works by Frenkel® and Hal-
bwachs10 in taking account of the presence of the de-
formation gradients, the magnetization and its grad-
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ients in ¢. It is also a generalization of the classical
known equation (Brown,15 Tiersten,14 and Maugin
and Eringenl).

Multiplying both sides of (3. 46) by S, and summing
over all indices, we get

pS,45%8 = 2pTS,, Fle 881 = 0. (3. 50)

from the skew-symmetry of FW. Hence integrating
(3. 50) over proper time, we obtain

$S,558* = S = const, (3.51)

i.e., the modulus of the spin tensor is constant. If we
introduce in a unique way the 4-vector spin s by the
relation

8, = (2icy e 55 SBUe,  SBY = (ic)lePr*Ps, u, (3.52)

we have
(3.53)

o _—
seu, =0,

Therefore, s, is in V3 and reduces to its classical

analog in the rest frame. Thus Eq. (3. 51) may be
written as

Sg = s§ = s,s* = const (3.54)

and is none other than the generalization of the class-
ical constraint imposed on the magnetization vector
in a saturated medium (cf.Ref. 1).

It remains to find the values of the Lagrange multi-

pliers 9 and a,.

4. DETERMINATION OF THE LAGRANGE MULTI-
PLIERS

In order to determine a,, we multiply (3. 46) with u,
and use the property

pS“BuB = — pSbBi,, (4.1)

which follows from (3.2). Hence,

oy

# B
8777

0= pS°L5<1'4B + TFgru, + 2T u,

2r

— ?SJR 76P;pu7 — Czaﬁ> , (4. 2)

which is posited to be valid for any spin S*8, Thus it
follows that

u r 2r oy ar - (4.3)
_— ., — —3% U (4.
c2 87775 T pe2 BTy

From this expression we see that a, is in V3, i.e.,

aguf =0, (4. 4)
If we neglect the presence of the magnetization and
its gradients in y, we obtain
g T
g =—+-—F,"u

=2 0. (4.5)

,y:

This has the same form as the equation of motion for
one electron in a magnetic field F2#8, i.e., (cf.
Anderson7)

moity = — (e/c)FgTu,. (4. 6)
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Hence as postulated in (3. 1), the introduction of a,
reflects the presence of the magnetization. From

(4. 3), assuming that the current is only due io moving
particles,24 we get the Lorentz force

fog=— (e/c)FﬂYu7 = (1/c)FB7J7, Jy, =—eu,, (4.7)
fos = —mycla, + myiy + 2 a:’b Sy~ 2¢ o VePiotye
c any pc
4.8)

Value of M: We perform the differentiation in the
lhs of (3. 43a) and use (3. 39), (3. 41), (3. 31)~(3. 35),
and the continuity equation

(pu®),, =0 in(® —T),[pun, =0 on(T). (4.9)

Upon contraction of the resulting equation with u , we
obtain

d Y 1 -
2 % Y -~ FpoF
pc — <<m+ = + 2c211p° 0p>

9 B "'_.U 9 "_.—vﬁ
+ J.TEW L TH + )thﬁmJ

=— pSVO‘ayuOC + tPegu, + pftu,+ —;;pl"S“FBy.
(4.10)

Now consider the particular case for which the 4-
force f« is derivable from a potential . Hence we
have

fou,=—dau, =— &, (4.11)

Thus (4. 10) yields

— pcz‘Jil - Pll'/ + Em;wﬁ :B‘ﬁ—;ﬁ; + s’m}iVﬁ.ﬁp;}:B
= tPegu, — p® — 3pTSHI[EFy + (1/T)agu,—a,uy)].
(4.12)

Upon using the definition (3. 48), the last term in the
rhs of (4.12) may be written as

. 1
1p881( By, + (@, - ayu)) (4.13)

: oY 1
= [T S p
prS (a?rsy P Pay ;P)’
where we took account of the following result due to
the skew-symmetry of S":

S8y I s SYMF
SPIEy, = 2TFIB STHE, = 0. (4.14)
Upon use of (3. 35) it is easily verified that
oY —
tBe y = —tBay . =—p—"— XK (4.15)
Hel ;B 8
« Xk .
Note also that
Mpp st = po— s T (4.16)
and that
V= xr g BEC L W T Wy g1
) GO amuis 26

We introduce the internal energy € per unit mass by
the definition

e=y + 6. (4.18)
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By using the conservation of entropy flux (3. 45b) and
the definition (3. 45a), (4. 18) gives, by differentiation

V=& —nb. (4.19)
Now carrying the expressions (4. 15)—(4.17) into
(4.12) and using (4. 13) and (4. 19), we get

cOM = d+ ¢ — . (4.20)

Upon integrating over proper time, we finally obtain

C2M =3+ € — Y + c2, (4.21)
where c2 is a constant of integration which represents
the rest energy. Now we can write (3. 33) and (3. 34)
in their definitive forms
w=1++%, 13
c2 2c2 *°

Yo

o= pS—2 <i¢y - @> + 2% (% - -lsmnyp;p>syau#,

¢ Mol €T MM P (4.23)
Here w is the total kinetic energy per unit mass. In
the nonrelativistic limit, it is the sum of the rest
energy, the classical kinetic energy of translation, the
kinetic energy of rotation of the spin (or energy of a
magnetic doublet), the internal energy, and the poten-
tial of the force f. In the expression of the non-
mechanical momentum p2, the first term was already
found by Halbwachs10 and the second term which in-
volves the electromagnetic anisotropy effects and the
neighboring-spin interaction phenomena is believed
to be new.

Fos, (4.22)

5. INCOMPRESSIBILITY

It would not be difficult to consider an incompressible
material and draw the consequences as to the form of
the stress-energy-momentum tensor T¢8, In that
case, when we follow the motion, the following con-
straint is imposed:

6p = 0. (5. 1)
From (3. 14c), this is equivalent to:
Pog(0xB)., = 0. (5. 2)

Therefore we introduce a Lagrange multiplier p
referred to as the mechanical pressure (note that it
is not introduced through the potential ¢ and there-
fore, it is not to be confused with the thermodynami-
cal pressure 7 appearing in the treatment of fluids,
which is defined as 7 = — 3y/5-1). We must add to
OW a term g

pP ey (6x8),  d4o. (5.3)

e
It is then easily verified that this results in adding a
term — p P28 to the expression (3. 31).

Equations (3. 43)—(3. 49), (3. 16),and (4. 9) constitute
the complete set of field equations for rondissipative
polarized elastic solids with electrvonic spin in spe-
cial relativity theory. In the next section, we give a
slightly different derivation of these field equations.
For this, we need the following expression:
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Tla) = paysy[auﬁl — tlBal + pI‘F[a7 SVl + smuutﬂﬁwiaj .
(5.4)
6. THE LORENTZ INVARIANCE REQUIREMENT

Now we propose to recover the basic laws governing
the behavior of the material, i.e., the balance of
energy—momentum and the balance of moment of
energy—momentum, by applying the Lorentz invari-
ance to the variational principle (3. 11). We postu-
late the following,

The balance laws follow from the invariance of the
variational principle (3. 11) under the inhomoge-
neous proper group of Lorentz or Poincaré group

(Ap)-
A. The Group of Lorentz

A Lorentz referential change is a real linear trans-
formation of coordinates in V4 which conserves the
norm of intervals in this spacetime manifold of nor-
mal hyperbolic metric. New coordinates x*« are
deduced from the old ones x @ according to the set of
relations

x¥ =AM x? +bH (6.1)
where b* is a constant 4-vector. The conditions of
reality and invariance of the norm are expressed by

A, =A

(2. AL = A
v uy Ava —AUHA b= Gu:

(6.2)

where a superposed bar indicates the complex conju-
gate. From (6. 2), it follows that

det(A#)) =+ 1. (6.3)
The inverse of (6. 1) reads:
-1
X =xPVA S+ K (6.4)

The changes of referential (6. 1) subject to (6. 2) form
the Poincaré group (A) or inhomogeneous group of
Lorentz.

If det(A#,) = + 1, the sense of the triad formed by the
three spatial axes is conserved under the transforma-
tion (6. 1), and we have the proper Lorentz group (Ajp).
If b# = 0, we obtain the homogeneous Lorentz group
{(Ag). The proper group is a connected Lie group, i.e.,
all the transformations that belong to (A,) can be con-
sidered as resulting from successions of infinitesi-
mal transformations. Thus one can confine the study
of invariance to the effects of infinitesimal transfor-
mations.

An infinitesimal mapping generated by (A;) can be
written

KX = RExV + gt Re, =0, + eQH (6. 5)
where € is an infinitesimally small constant, 2 , is
a skew-symmetric constant 4 X 4 matrix and d* is an
infinitesimal 4-vector. Therefore there exist six
independent 2 , and four d*. The group (Ap) so indu-
ced is said to be a ten-parameter Lie group. Accor-
ding to Noether's theory of invariants,25 there corre-
sponds a conservation law to each symmetry of the
system. For (A,), we obtain four equations giving the
conservation of energy—momentum and six equations
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giving the conservation of moment of energy—momen-
tum.

B. Balance of Energy—Momentum

Making € = 0 in (6. 5), we get an infinitesimal shift of
coordinates:

X¥H = xH + g, (6. 6a)

Bk = dk, (6. 6b)

Upon carrying (6. 6b) into (3. 30) and postulating the
expressions to be valid for any d* and any volume
and hypersurface, we obtain the Cauchy's laws of
motion (3.43) in V4 if and only if the Lagrangian den-
sity or equivalently ¥ does note depend explicitly on
the coordinates,i.e.,

W . (6.7)
dxo

C. Balance of Moment of Energy ~Momentum

Making d* = 0 in (6. 5) we get an infinitesimal rotation
of the coordinates

(6. 8a)
(6. 8b)

x¥e = (88 + € 9 oy)x8,
bxa = €9 xB,

For a skew-symmetric tensor Me® neglecting the
term in €2, we obtain

OMob — 26.@,[°‘yM'7'5] . (6.9)

Note the similarity of (6.9) with (3. 10). Thus, since
882, ¢ is arbitrary,we can select

6= €2 (6.10)

We carry the variations (6. 8b) and (6. 10) into (3. 30),
add the null quantity €(7Tte8l — T8)9 . to the inte-
grand and use (5.4):
Jan(— Tlelrl, + pf WxbIQ gddv — JopryMetrn,

X QaBdBS + f(CP»F) (%pS‘aB — TieB] — Laﬂ_Maﬂy:y

— Z81) 9 _.d%v — fq,)[T[amxB] + Mo8N|n,Q _,d3s

=0, (6.11)
in which we have used the definitions

Lob = ZFIaynﬂh, (6.12)

MoBy = 29 laduy! 1?6]p , (6.13)

"

Y ~ -
teB + 2p a# S8+ ZMaTE, —MHET i
(6. 14)

oy
Lo# s the electromagnetic body couple per unit vol-
ume. We call M8 the electromagnetic couple stress
tensor.

The first term of (6. 11) vanishes because of the
balance of energy—momentum. If the remainder is
posited to be valid for any volume (® — I') and any
hypersurface (I') and for any arbitrary constant 2 ;,
then we obtain the local field equations:

ZaB

1pSeB — Meby  — TloBl = Leb + ZIeBl in (® —T),
’ (6.15)
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[T[aIMxB] + M"‘Bx]n)‘ =0 on(D), (6.18)

MoBrn, =0 on (o6 — I, (6.17)
Upon use of formulas (3.27) and (3. 35), Z«8 can be

written in the form

geo = o2 xns v n 2

oXK o, 7
ro Y _ge, 4 ¥ ?ryu:ts) (6.18)
with Moy y Mo
V= U(XE T Ty 6). (6.19)

We say that the moment of energy—momentum is
balanced if and only if Z28 is a symmetric tensor,
ie.,

ZeB) = 0, (6.20)
This equation is referred to as the Loveniz inva-
riance vequivement. It results from the requirement
of form invariance of i under Lorentz mappings (6.1).
Alternatively Eq. (6. 20) may be considered as a con-
stitutive equation for the antisymmetric part of /¢8,
We shall give a solution of (6.20) while studying the
relativistic objectivity in Sec. 10. We remark that
(6.7) and (6.20) appear to be the relativistic counter-
parts of the relations derived by Toupin2é and
Maugin?7 (see also Ref. 1) as a consequence of Eucli-
dean invariance.

Finally we give another form for Eq.(6.15). We in-
troduce the tofal spin third-order tensor $>BY through
the definition:

Saby = 1pSadyy — Moby, (6.21)

It satisfies the following restrictions

Sobruy =0, Sobru, =0, Saﬁmy/cz = $pSeB,(6.22)
Taking account of (6. 20) and using the continuity
equation (4.9) and the definition (6. 21), we write

(6. 15) in the form

80‘57;7 — T} — LaB, (6.23)
This is the canonical form given by Grot and Eringen®
for the equation of balance of moment of energy—
momentum. Upon use of (6. 20),it is trivial to show
that (6.23) and (3. 46) are two equivalent forms of

this conservation law.

7. ENERGY EQUATION

This equation has been arrived at during the evalua-
tion of the Lagrange multiplier 9. Indeed, taking
account of the result (4.21), we can write (4. 12) in the
form

peé + 1P gu, — %pFSﬁY[Féy.+ (1/T)(agu, — a,uy))

=W, BT — W, WHYIE = 0,

(7. 1)

Upon using (4. 13) and (4. 15), then we obtain the final
form of the equation of balance of energy,

pé = trou  — 1 TOTF, 4 WM, TE, (7.2)
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Here we introduced the local magnetic flux tensor §F
by the definition

ow
awer
Equation (7. 2) is the relativistic counterpart of Eq.
(8.9) of Ref. 1.

5y = — 2

(7.3)

8. CAUCHY'S EQUATIONS

A. Balance of Momentum

We perform the differentiation in (3. 43a) and, taking
account of the continuity equation, we get

pou + pwic + p (po/p) — ey + M B Fuve

W Bre o= fa + pfe (8.1)
Note that

dy C V3, uvi,

e yPY, = 1Y o —c 2tPay  qu?,

foPY, =— &7 —c2dur. (8.2)
Applying the projector P7, to (8. 1), we find
pwity + plpe/p )PY — 1BY. g + 2 By uY

+eZm, Bm“’u“ + o2 m ﬁﬁu"':ﬂ u?

+ (0, BIY) g = — p®, Y —pc‘z‘i}lﬂ S P o

(8.3)

which constitutes a set of three independent equations.
This is the relativistic counterpart of Cauchy's first
law of motion.

B. Balance of Moment of Momentum
The analog of Cauchy's second law is found by multi-

plying (6. 23) by P+ P¥; and using (5.4) and (6.21):

LpSuv — ¢ 2pSlegurlia® — Muvy. + 2c72MUIBYlytly

— o folvq sub — 2oLyl T

+ tlml = @Ivgul + v @M, (8. 4)
which constitutes a set of three independent equations.
In (8. 4) we have made use of the definitions of the
following 4-vectors:

Qo= ¢ lgboy,,

M, = (2c)1 € (8.5)

(8.6)

aﬂyéﬂﬂyué’

a=clFebuy, @o=(2c)te*BYSFyu,.
In absence of magnetic spin and polarization gradients
Eq. (8. 4) reduces to Eq. (5. 19) of Grot and Eringen.6

It is also of interest to project (6. 23) along u,. Upon
use of (6. 21) and (5. 4), we obtain
— épsaﬂaa + MO‘BYuB;Y +

c?pa,Sre = 2F (o m8ivu,  (8.7)

or, with the expression (4. 3) for ay,

L . o 2

gpSO‘ﬂuB + MaBy“B;y + <Fp7 — 2 e + 5”#:@)”7“‘““
= 0. (8. 8)

In the absence of magnetic spin and polarization gra-

dients, Eq. (8. 8) reduces to

(Fw _ o 0¥ )1r7°‘u“ = 0.
omHY
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The significance of the latter result will appear when

we go to the limit of small velocities. Because of the

skew-symmetries, Eq. (8. 9) represents only three in-

dependent equations if it is to be valid for any velocity
field and any polarization tensor.

9. SOLVABILITY OF A PROBLEM

The number of scalar unknowns represented by the
set of variables [p,u*(3 independent components), ¢8<,
n,Jo Feb gob Gab MofY] amountsto 1+3 + 16 + 1 +
4+ 6+ 6+ 6+ 24 =67 and the number of compo-
nents of Egs.(4.9),(3.43a), (3. 46), (3. 49a), (3. 44a),
(3. 16a), (3. 45b), (3. 35), (7. 3), and (6. 13) is precisely
1+4+6+1+4+4+1+ 16+ 6 + 24 =67. Thus,
if we assume that the functional form of the free
energy Y and the nonelectromagnetic force f are
given and that what happens in the remainder of the
universe [outside (®)] is known, then any problem for
the nonlinear velativistic theory of polarized elaslic
solids with electronic spin can be solved. Ultimately,
theorems of existence and uniqueness for the system
of partial differential equations given above have to
be proved.

We must however remark that a solution to such a
problem, even well posed with “ad hoc” boundary con-
ditions on (3®) and initial conditions on a spacelike
hypersurface [e.g., the initial configuration of the
material body (B)] is clearly unmanageable.

Remark: According to (3. 45b),n = const along
world lines. Thus (3. 45c) and (3. 45d) are satisfied
identically since mass is conserved, i.e., p7u® ny = 0
on (8¢ —I') and,on (T'), [prud]n, = []punﬂ_Ole,
[n] = 0 on (I'). Therefore, no reference need be made
to entropy change in problem solving.

10. RELATIVISTIC OBJECTIVITY

Herein we follow the line of Bressan, 28.29 Kafadar
and Eringenl?, and use the results due to Soderholm.l?

A. Polar Decomposmon

Let F and F respectively denote the direct and inver-
se deformation gradients of the motion introduced in
Sec. 2:

-1

(F)¥, = XX,

(F)# = PHyxr (10. 1)

VK
The Green and Cauchy strain tensors are then defined
by

14
C=FIF, e¢=(F)TF, (10.2)

where the superscript T denotes transposition.

We seek R isometric and U symmetric definite posi-
tive such that

F=RU
with
R:V4 - I/

(10.3)

U: Vi, VKR’
where V. is the three-dimensional affine space of

the reference configuration (V = E3). The isometry
of R means

RIR=1I, ie, R¢RD=0k. (10. 4)

b

Moreover,R satisfies the following properties
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R-RT =P, ie., Re RK =P (10.5)

Ru=0, ie., Reu =0 (10. 6)

From the latter property, we see that R reduces to its
classical analog (rotation tensor) in an instantaneous
rest frame, i.e.,

R, 2 (R*,0). (10.7)
R represents the application
R:Ei(C) - Ei(c), (10. 8)

where Ei(C) is the set of orthogonal eigenvectors N
of C and Ei(c) is the set of orthogonal eigenvectors n
of ¢ (see Bressan28 and Kafadar and Eringenl?), i.e.,

nu(a):R“KNK(O(), a4 = 1,2,3, n“(a)u :O.
(10.9)
R is therefore the conventional voilation lensor.
The only solution to (10. 3) is
U= (FI-F)l/2 = C1/2 (10. 10)
U = RT.F, (10. 11)

B. Equivalent Motions (Siderholm17)

Given XX =X X(x2) an inverse motion of domain of
definition M € V4 and (@) the particle trajectory
through M[(@) being defined on R by the timelike para-
meter 7 according to the equation C(7 = 0) = M; X is
of class C™2 on (€)], let the, same apply to , and
(@f) The pairs (X, M) and (>€ ) are said to be eqm—
valent if there exists a mapping ¢ such that the fol-
lowing equivalence velation holds true:

a. ¢ is defined in a neighborhood of (@), its range
being a neighborhood of (€). ¢ is of class C™! and
C™2 on (€). It has an inverse Epl which is of class

C™1 and @742 on (é)
b. For any 7, ¢[€(7)] = @(T)

c. ¢ maps V3 at M into Vﬁ at M.

d. The reduction of ¢ to V3 is isometric for any 7.

e. In a neighborhood of (é)
=x-9.
It is shown by Soderholm that such a ¢ is given by

0:@(7) + x - &(7) + £(0)-x, (10. 12)

where £ is an automorphism of class C#1 defined on
the interval (— «, 0]. We call Q the restriction of
&(7 = 0) to V4 (the domain of V4 where 8€/37/,  is
defined, i.e., a neighborhood of M. Q is thus time de-
pendent and isometric.

C. Objectivity (S6derholm17)

Let §(X,M) be a functional with values in R. Such a
functional is said to be objective if

* %
F(X,M) = F(X,M), (10. 13)
* *
when (X, M) and (¥, M) are equivalent.
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Thus according to (10. 12) the function y introduced
in (3. 1) is objective if and only if

Y(F, 7, 1) = ¢(QF, 2797, Q1197) (10. 14)
If in particular we select

Qo = R, (10. 15)
then we can write

-1

Y = 1,D(CKL, [IXZ, TIEL ), (10. 16)
where

-1

CKL = g'O(BXK, O(XL,ﬁ’

MKL = XK. a%aBXL,B’ (10.17)

KL = XK Tob XL

These three material tensors provide a set of 18 in-
dependent quantities which form a minimal function
basis for . Upon use of (10. 16), the constitutive
equations (3. 35),(7. 3), and (6. 13) read

the = — 2p _a;tb XL8 + Y =gy e Iey, XL
3CKL ollKL T oll%L,
X XKoo (10, 18)
Fab — — 9 W XKloXL.bl (10. 19)
OTIAL
MoBY = 9 oy XK. [ag 8l XL by (10. 20)
g oll&L,, w

Remarks: (a) We can check that (10. 16) constitutes
one solution for the system of partial differential
equations (6. 20). Therefore,in the present case, the
Loveniz invariance requivement and the relalivislic
objectivity lead to the same functional form for y.

(b) We could have started with a function y in the
form:

Y = YXE
with -
Peoy = Po @Y X0y,

a’(f)ot’fﬁ'(oc’pozK’MaK) (10. 21)

otK = Payc‘)ﬁ:y:)\x)\K,
- — (10. 22)
®r =0®Yp, Wr=mv/p,
@ and M being defined by (8. 5). Instead of the con-
straint (3. 2), we should have imposed

NMeu, = 0. (10. 23)
Then, the objectivity requirement would lead to the
reduced form

-1 -~ o~
Y = Y(CEL, BK Sk, PL, ML) (10. 24)
with
GK = XK B, otk = XK oflesgn(xi/XK),  (10.25)
PL =XL Pe, ML =Xl M%. (10. 26)

1Z. NONRELATIVISTIC LIMIT

Relativistic theories are self-consistent and do not
need formally to be written in three-dimensional for-
malism. In the present case the full formulas written
in such a way would be somewhat cumbersome,
Nevertheless, one would like to compare the results
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obtained above with those of previous works. In the
frame of special relativity theory, the present theory
is in agreement with the general presentation of rela-
tivistic continuum mechanics given earlier by Grot
and Eringen6. It generalizes the works of Frenkel8,
Weyssenhoff and Raabe, 22 and Halbwachs10 in intro-
ducing the tensorial fields ¢8 §«8 and M>#7, How-
ever, one has to go to three-dimensional formalism
and to the slow motion limit to be able to compare
with classical theories such as those of Brownl3,
Tierstenl4, Toupin!3, Eringen3, Suhubi3?, Mindlin31
and the theory developed in Refs. 1 and 16. Cases for
which quasimagnetostatics or quasielectrostatics
alone are considered, are of particular interest.

In order to obtain these three-dimensional expres-
sions, the limiting process is carried out in two steps.

(1) Every tensorial equation in four-dimensional for-
malism is projected (a) onto the hyperplane V3, (b)
along the 4-velocity %, and written uniquely in terms
of 4-vectorial quantities. The splitting of space and
time that were synthesized in Minkovskian tensorial
formalism is then accomplished.

(2) In an inertial frame, the 4-vectors are expressed
in terms of their spacelike and timelike components.
Finally terms of order of magnitude smaller than or
equal to 1/c2 are neglected and electromagnetic quan-
tities are expressed in the rest frame in order to
arrive at a quasistatic theory.

Calculations are lengthy and only results are given in
the sequel. The first step has already been carried
out as far as the mechanical equations are concerned.
It resulted in Egs. (8. 3), (7. 2), (8. 4), and (8. 8). The
projection of Maxwell's equations has been given in
Grot and Eringen.® In absence of current and for
quasimagnetostatics, the only equations left are
VXH=0, VB=0

in (B —T), (11.1)

nX[H]=0, [Bln=0 on(D), (11.2)

and expressions similar to (11.2) on (9B —I'). In

absence of charge and for quasielectrostatics, we get
VXE=0, vD=0

n(B—1T) (11. 3)

nX[E]=0, [Dln=0 on(T)and(@B—T) (11.4)
Note the expression of the derivative with respect to
the proper time 7:

o =14

a1y dt’ 7
where v is the three-dimensional velocity of the
material and d/dt is the material derivative.

i

1—82, g=lvl/e, (11.5)

It is easily shown (cf. Appendix of Ref, 1) that,in a
rest frame,the electromagnetic force (3. 39) reads

frew, = qE" + (1/¢)(3 X B)* + (VAE)-P + (V*B)-M
(11.6)

where ¢ is the charge density,J is the 3-vector cur-
rent, E is the electric field, B is the magnetic inten-
sity,and P and M are, respectively, the 3-vectors
polarization and magnetization per unit volume.

For the case of quasimagnetostatics, in absence of
currents, Eqgs. (8. 3), (7. 2), (8. 4), and (6. 20) reduce to
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p ZZ{ =t + pft+ (V'B)-M (11.7)
dy r d d
pd_'—tél — P Euﬁf‘“"”*(ukm)
X in(B—T) (11.8)
L4 (g + gtk + L pmir >Mu (11. 9)
2T dt L p im ’ .
811/ XKl + = 8tl/ I+ - (4 P”,K =0, (11.10)
OXE 1 6u[;< OMis, x
with
l// :ll/( K,/{)uk_'luk']()y (11- 11)
titk =—p oy XKk LBk z_ﬂ,
oXX Ay,
ki =p ¥ xr o (11.12)
auzK

Here p*is the magnetization per unit mass, S#! is its
dual,and p* , is its material gradient. Equatlons
(11. 7) (11. 12) are similar to equations found in Ref.
1.32 The continuity equation, boundary conditions, and
jump relations reduced accordingly.

We now examine the case of quasi-electrostatics. The
condition (3. 5) eliminates the occurrence of polariza~
tion in the rest frame of a particle. Thus, in order to
recover the theory of elastic dielectrics, we must
neglect all gyromagnetic phenomena and consequently
micromagnetic phenomena. With this assumption, for
quasi-electrostatics, in the absence of charge, Eqgs.
(8.3),(17. 2),(8. 8), and (6. 20) reduce to

p %— =tk + pft + (VAE)-P, (11.13)
ay _ . d [Pk .
p%_t lvl;/e "r‘pEk-d-t-(? 1n (B_F), (11.14)
B+ EF+ % B, =0, (11.15)
W yga W Py By <P_”> =0,
aXK,[/, 5(@/9) P a(P[é/p);I( P’/ ik
(11.16)
with
¥ = YUXE,, P*/p,(P*/p) ¢), (11.17)
. oy oy
tl/{ —_— XK, E/? =
P axX TRy
N/
Eth =p—2Y _ x1 (11.18)
L o(Py/pyg

In order to obtain (11. 15) we have posited (8. 8) to be
valid for any velocity field and any polarization field.
Equation (11. 15) is referred to as the equation of
molecular equilibvium (Eringen3), Equations (11. 13)
to (11. 18) are similar (cf. Footnote 32) to those of
Suhubi2 and Mindlin5. In absence of polarization gra-
dients, and for sfatics,they reduce to the equations of
electroelasticity given by Eringen.3 Boundary condi-
tions and jump relations reduce accordingly. Equa-
tion (11. 16) is none other than the constitutive equa-
tion for the antisymmetric part of-the stress tensor.
Thus we can state that the theory developed in this
article reduces satisfactorily to the classical approa-
ch to micromagnetism as enunciated in Ref. 1 for the
magnetostatic part and to the classical treatment of
elastic dielectrics with polarization gradients for the
electrostatic part.
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12. CONCLUSION

A variational principle has been constructed that led
to the complete set of differential equations, boundary
conditions, jump relations, and constitutive equations
for the dvnamical theovy of nondissipalive polavized
and magnelized solids which exhibit an inlevnal spin
of electronic (i.e., magnelic) ovigin. The present
work is clearly a generalization and unification (in
four-dimensional formalism) of previous works on the
theories of magneloelastic interactions (in the sense
of Brown15) and of elaslic dielecirics. We may thus
consider that it gives a sound treatment of these dif-
ferent phenomena while, from the pragmatic point of

G. A, MAUGIN, A. C. ERINGEN

view, it allows us to write equations and more par-
ticularly electromagnetic entities in their best frame
(the special theory of relativity).

The materials studied here exhibit extra degrees of
freedom of quantum-electromagnetic origin. Further,
there exist materials for which extra degrees of
freedom of purely mechanical origin can intervene
(e.g., micromorphic materials and polar materials)
and where the magnetic effects studied in this article
are of importance. Therefore, it is the purpose of a
subsequent article to provide a variational treatment
for the mechanical effects in the frame of four-dimen-
sional formalism. A unification of both aspects is
expected and left for further researches.
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made clear by Eriksen and Truesdell .4 They consider-
ed deformable directors of which the number can
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using the concept of microsiruciure, Eringen and
Suhubi® and Eringen? constructed the theory of
micromorphic media. The connection between micro-
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and gave various theories on directed fluids, solids
and memory dependent materials (cf.Refs.12-15).
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12. CONCLUSION

A variational principle has been constructed that led
to the complete set of differential equations, boundary
conditions, jump relations, and constitutive equations
for the dvnamical theovy of nondissipalive polavized
and magnelized solids which exhibit an inlevnal spin
of electronic (i.e., magnelic) ovigin. The present
work is clearly a generalization and unification (in
four-dimensional formalism) of previous works on the
theories of magneloelastic interactions (in the sense
of Brown15) and of elaslic dielecirics. We may thus
consider that it gives a sound treatment of these dif-
ferent phenomena while, from the pragmatic point of
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view, it allows us to write equations and more par-
ticularly electromagnetic entities in their best frame
(the special theory of relativity).

The materials studied here exhibit extra degrees of
freedom of quantum-electromagnetic origin. Further,
there exist materials for which extra degrees of
freedom of purely mechanical origin can intervene
(e.g., micromorphic materials and polar materials)
and where the magnetic effects studied in this article
are of importance. Therefore, it is the purpose of a
subsequent article to provide a variational treatment
for the mechanical effects in the frame of four-dimen-
sional formalism. A unification of both aspects is
expected and left for further researches.
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RELATIVISTIC CONTINUA WITH DIRECTORS

Kafadar and Eringenl€ gave later on an axiomatic
approach to the nonlinear theory of micropolar media
with its relativistic extensions.l?

In his theory of liquid crystals, Eriksenl8 used a
three~dimensional continuum with one director which
represents the orientation of cigarlike molecules.
Other applications were made by a number of writers,
e.g.,Green and Laws,19 Green and Naghdi,2© and
Alblas.21 Maugin and Eringen22 considered the rotat-
ing magnetization vector at a point of a deformable
magnetically saturated medium as being a director.23

Thus we see that, except for the Cosserats' work, the
main developments in the three-dimensional theory
took place during the last decade. Surprisingly
enough, a concept almost identical to that of divec-
{ors24 has been developed in the frame of special and
general relativity theories. In 1928, Einstein,24 in
one of his attempts to construct a unified theory (for
which he considered a spacetime continuum of null
curvature and nonvanishing torsion),used fields of
parallel (elvapods30 gince then called Einstein—
Kramers variables (see Kramers31), The use of
these variables was taken over by a group of physi-
cists working on the hydrodynamical interpretation
of the wavefunction of quantum theory (the so-called
“causal re~interpretation of quantum mechanics”
(deBroglie); see particularly Aymart32, Unal and
Vigier,33 Takabayasi,34 and Halbwachs35, They
consider the quantum fluid to be a field of micro -
scopic spinning tops viewed, of course, in a contin-
uous way at our observation scale. The kinematical
description of the motion requires essentially the
knowledge of the velocities and proper rotations. In
particular, Gursey3€ used the Einstein—-Kramers
parameters for such a description.

Our goal is to look at tetrapods (for convenience, we
call them direciors) of varying orientation in the
Minkowskian space-time of special relativity.
Through the vehicle of a variational principle, we
obtain the field equations, constitutive equations,

and jump conditions for a polar elastic solid. One
expects that the field equations based on this approach
will be somewhat similar to those of Kafadar and
Eringen.17

A remark is in order on the evolution in the axio-
matization of relativistic continuum mechanics:
Most of the classical works in this field start from a
nonrelativistic object defined in a rest frame and,
then, by guess make passage to the proper covariant
four-dimensional relativistic analog (cf.the construc-
tion of the energy—~momentum tensor for a perfect
fluid in Landau and Lifshitz37 or in Adler ef al.38),
We prefer to start with four-dimensional axiomati-
cally set objects and verify in the limit of small vel~
ocities that we have not created ‘“monsters” which
have no equivalent in classical continuum physics.

2. KINEMATICS OF ORIENTED MEDIA IN V4
A. Classical Motion in V4

For a complete description of the classical motion of
continuous media in V% we refer the reader to Grot
and Eringen,3? Kafadar and Eringen,17 and Maugin
and Eringen.40 The following brief account is needed
in the sequel.
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We consider the Minkowski four-dimensional mani-
fold V4, In rectangular coordinates, the square of an
arc length is written

(ds)? = (dx)2 + (dy)2 + (d2)2 — c2dt? = dz dz¥,

2.1
(21,22,23,24) = (x,y,2,ict), (2.1)

where (x,y, z) are three rectangular coordinates, f is
the time, and ¢ is the velocity of light. Henceforward,
Greek indices (small or capital) are assumed to take
the values 1,2, 3,and 4, and all Latin indices the
values 1, 2,3, The Einstein summation convention is
used throughout the article.

In curvilinear coordinates (2.1) is written

ds? =g, dx>dxP (2.2)
The reciprocal g87 of the metric tensor is defined
according to:

8.,p8%7 =8},

where 8] is the Kronecker symbol. The proper time

7,a timelike parameter monotonically increasing

along the world line (€, ) of a material particle ori-

ginally situated at the Lagrangian coordinates XX,

K =1,2,3,in E3, is defined by
(dT)2 = — (ds)2/ c2, (2.3)

The classical motion of a continuous medium in V4

is described entirely by the set of relations41

xo = xa(XA)

with X2 = (XX icT), A=1,23,4.

(2.4)
The operator 9/37T generalizes the notion of material
derivative., Given a tensorial object A, we note
. o
B _ A=A, uc with e =2

(2.5)
oT oT

u® is the 4-velocity the modulus of which is constant,
ie.,

8.pUuoub = — 2, (2.6)

The projection operator or projecior P§ is defined by

Py =06¢ + c2uou, (2.7)
and satisfies the properties

P“BPBY:P%, Pxu, =0, (2.8)
A 4-vector A% verifying the relation

Auy =0 or PogAB=Aa (2.9)
reduces to

A £ (Ak;o); k= 1’273’ (2-10)

in a rest frame.

We assume that (2. 4) possesses the unique inverse

XE = XK(x9), T=T1(x%. (2.11)

The following quantities are thus well defined:
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F is the inverse gradient of the motion while the
direct gradient F is defined by

K

(F)o, = xo, = Peyx8 (2.13)
One can verify that
XK,Pxp L =0F, xb XK, =Py, (2.14)

Since XX /37 = 0 and from the definition of F, we
have

XE ut =0, x%u,=0, (2.15)
Thus in a rest frame, according to (2.9) and (2. 10),
the gradients reduce to their classical analogs

XK x (XK_k ’ O),b xaK £ (x k'K, O), K fixed.

o (2.16)

Finally we note that the Green strain tensor C, ; and
the Jacobian J of the motion are defined as

(2.17a)
(2.17b)

Cyr = Bap¥%%Pp,
J = (detCK,)1/2,

In the sequel, commas, semicolons, and colons are
used to denote partial, covariant partial, and covariant
total differentiations, respectively.

B. Directors in V4

To each point M of coordinates x* in the 4-dimension-
al continuum, we attach four non-coplanar 4-vector
fields d(®, (£) =1,2,3,4. The index (£) is a number
identifying the director and has no tensorial charac-
ter. We have

d® = d(xe) = d€E) (XX, 7). (2.18)

The symmetric, nonsingular metric 2(9(9 and its
reciprocal g ,) are defined by:

_ (£)
g0 =g dOxg(©8,  gOEg =68 (2.19)

where 623 is the unit matrix in the Euclidean space
E4,

A system of four reciprocal directors e, exists
such that

®, _ s
d e(g) = 6(0 .

In fact, the unique solution to the sixteen linear equa-
tions (2. 20) is given by

1
. — Bd@ do) (o

e” CO@E T A B 4,

(0" 7 31 det|g(@ ®)] hd (2. 21)

where €g) ) (p)(p and e#¥*# are permutation symbols.
If we require the 4-vectors d® to have a unit length

and to form a tetrad of orlhogonal 4-vectors at a
point M of V4,then the following constraint holds:

(2.22)

The 4-vectors d® and g@)(“)e(u) are no longer distin-

(2. 20)

d&. a@) = 5@,

guishable and the matrix g(®) becomes a unit matrix.
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Therefore, we may write d,) so that

®
dg, )#d(i)‘J = 00y, (2.23)
a.’(g)ml(ﬁ)‘1 =0]. (2.24)
With the foregoing assumptions, we have
det@®) = 1,  det(dy,y*) = 1. (2.25)

Thus, d®, behaves like an orthochronous Loventz
transformation, though, in general, it is not.

Now each point M of V4 is equipped with a tetrad of
unit vigid vectors or directors. We are therefore
dealing with a 4-dimensional Cosseral continuum.

The 4-vectors d(9 (¢ fixed) may be decomposed into
space- and timelike components by use of the pro~
jector Po8 je.,

d®, =d®u + 40, (2.26)
where

d® = — 4O, u%/c2,d€ = PO, (2.27)
The following identities are satisfied:

d® u* =0, [1—(5)(1 =Ppp? E(E)ﬂ . (2.28)
We now propose to select

a® = u,/ic, (2.29)

i.e.,d® is timelike and the remaining three directors
are contained in the hypersurface V3 orthogonal to
the worldline (@XK) at a point M of V¢ where d(®) are

defined. We have

d(g)o‘d(‘l)a = (ic)? d(g)o‘ua =0, £E#4, (2.30)
Thus we set
d®, = (d®_,d®), K=1,23, (2.31)

which is a special case of the decomposition (2. 26).
Introducing the new symbols x %, we have:

MW =xa2 0, a0 =0, (2.32)
g 5(4)a = 0, d® = i_l,
an
dEo = paﬂd(x)e = B = yaK, ued(®) =0,
(2.33)

Po dWB = (icy1PYuf =0, dP8y, = ic.

According to (2.9) and (2.10),in a rest frame, we
obtain the following reduction:

am x x,%50, K=12,3. (2.34)
We note that (2.23) can be written
Lo d(K)y d(K)IJ = GZ + C_z uYup,

Xex K =P, (2.35)

with the definition

din? = X% du =0.
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The molion of lhe diveclors: We consider tetra-
pods of unit directors of varying orientation from
point to point in V4, It must be noted that the instan-
taneous motionofa “sfruclured paviicle” i.e.,a mater-
ial point M in V4 equipped with a set of four directors)
is characterized by the infinilesimal Lovenlz trans-
Jormalion which defines the evolution of the system
as the time goes on. Hence the proper time rate of
the directors can be written

e A0, = dwos,
oT

where §, 5 is a skew-symmetric 4 X 4 matrix which
has the general expression

(2.36)

QB = c-1(AxyB — ABy%) + B (2.37)
with
o = Pa PB,QYS = cleablow uy,  Gby, = 0,

(2.38)

A= — cT1QaBy,,  Axy, = 0. (2.39)
In (2.38), we have defined the 4-vector w* by43

we = (2ic) te*BTQ us,  wru, = 0. (2. 40)
Dotting (2. 36) with dizyy, We get

0 .
Qoﬂ = —a_.r_d(g)[oc d(C)Y] == 9706' (2.41)

Note that this definition is slightly different from that
of Kafadar and Eringen.17 For the special choice
(2.29), we see that

QO(B = Vaﬁ'_c_za[auﬂ]’ (2.42)
where we have set
0 4. .4 =9 K _
Vup = P la " %8l = 37 Xla " Xplk = Yoo
(2.43)

while the following identities are satisfied:

v =0, Qul=dn, u*Qg =5 (2.44)
It follows that the elements of the decomposition

(2.37) read

A =—q/c, w,=v, =(2ic) e, viPur. (2.45)
Reciprocally,
Vyp = (E0) Leyg, a1 ul. (2.46)

According to (2.9) and (2.10), in a rest frame, we
obtain the reduction

Vi 0
v, = (1,0), p* (O 0) .

We call Q , the angular velocily of the tetrapod and
v, the relalivislic gyralion tensor. Note that,in a
rest frame, Q4 reduces to the classical gyration
tensor (See Ref.16) for the space-space components
and to the linear acceleration for the space—time
components,i.e.,

« (Vi1 Vi /ic
Qop = .

—'I}k/l’C 0

(2.47)

(2.48)
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An elementary derivation of (2.41) may be found in
Halbwachs35,

C. Introduction of the Spin

In order to measure the rotation of the tetrad d(g),we

need a reference.?* We consider a 4-vector o, that
will be called spin. In conformity with our ideas on
quantum mechanijcal spin, we assume that ¢ is an
axial vector which is spacelike in nature (cf, Uhlen-
beck and Goudsmit). Hence, we take

Oauo‘: 0. (2.49)
With every axial vector ¢,, we may associate,in a
unique way,a skew-symmetric second-order tensor,
the spin tensor o, defined by

Oup = (ic)‘leaﬂxpo*uﬂ, 0 b = ulo,,=0. (2.50)
From (2.50) we solve for
0, = (2¢c) L€, g), 08 Tus, (2.51)

No restrictions being imposed on the directors, we
can postulate that there exists an operator 2, , such
that ¢, is expressed linearly as a function of the com-~
ponents of the directors,i.e.,

Ua:d(g)yz(g)yu. (2.52)

The explicit form of this operator is given in Sec. 3.

If the 4-vectors d¢® form a letrad of unit vigid direc-
tors and if the assumption (2.29) is used, then g,
which is rigidly attached to the tetrapod, can be ex-
pressed in the simplest linear combination of the d(®,
For instance, with ¢ colinear to d®, we could take

0y, = pZod®,, (2.53)
where p is the so-called invariant relativistic density
defined later on and Z, is the modulus of a standard
particle spin per unit of proper mass. In this case,
the meaning of the two remaining directors d( and
d(? iz left free, and any couple of unit vectors linked
to the particle in its proper frame and orthogonal to
both spin and 4-velocity is acceptable. Yet we shall
not use a relation as particular as (2.53), and we
shall consider the general relation (2.52) even if the
assumption (2. 29) holds.

3. MASS,INERTIA
A. Density

Let p, be the material density of mass in the refer-
ence configuration of a material body (B) in E3, Then,
the so-called invariant velalivistic mass density p is
defined by

1

p:pHJ, (3.1)

where J is given by (2.17b) or, alternatively, by either
one of the following formulas:

J = (620) L€, gy, X% (KB XY pureKLM,

J = [det(X> )] L. 3.2)

As time goes on, the material body (B) enclosed within
a surface (2B), sweeps out the 4-dimensional region
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(®) of V4, In (B), p verifies the known continuily
equalion

9
(pu~),, =0, or P+ pu® =0, (3.3)
oT '
while it satisfies the jump relation
[pua]r,a: 0 <3‘4)

across a discontinuity hypersurface (T) of given equa-
tion I'(x%) = 0. Here, the symbolism [ -] denotes the
jump.

B. Generalized Inertia

Generalizing the formula given by Eringen and Suhubi®
and Eringen,? we posit that the generalized kinetic
energy of votation in V4 assumes the form45

K:%I(ﬁ)(é)d(g)- d(y (3.5)
when no hypotheses are made concerning the d .
The object (9 (&) generalizes the notion of inertia; it
is symmetric and, therefore, represents a set of ten
independent quantities.

Upon use of (2.36), Eq.(3.5) yields

K= égﬁyﬂaﬂﬂa“, (3.6)
where we have set
g5y = 1V 0dgypd, (3.7)

The symmetric second-order tensor J;, is called the
genevalized inevtia. It admits a decomposition of the
form

Sas = Jus T Uabs T Colty — CUylly (3.8}
with

Jas = gy PP P, (3.9a)

Jos 4% = Jga* = 0, (3.9p)

by =— P19 ub = ¢, (3.9¢)

b u®* = cu* =0, (3.9d)

e =— SﬂyuBuY. (3.9¢)

Now, by analogy with rational mechanics, we postulate
the relation between the spin tensor and the angular
velocity:

o YL (3.10)

yo = YBlLy

Equivalently, with (2.51) and (2. 40), we have,in 4~
vector form,

o, = gﬂywﬁ. (3.11)
Then, Eq.(3.6) takes the form

K= éomQaY = %oyuﬂ (3.12)
1t is easily shown that .

00 = Iged®(,d®, (3.13)

or,via (2,51),
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o, = (2ic)“lewaﬂ I(g)@d(ﬁ)” d®alys

(3.14)
Thus, the operator Z,.,, defined in (2.52),is
Zoyn = (2007 Le g Ty ) dD Ul . (3.15)

Hence, Eqs.(2.52) and (3. 11) are consistent.

Henceforth, we consider the case for whichthe direc-
tors d'®) form a tetrad of unit rigid orthogonal vec-
tors,d® being defined according to (2.29). Then,
upon use of (2.23),the relation (3.7) is invertible,
Thus,

1@ — 967d(5)5d(<)7. (3.16)

With the symbolism (2.32),we can write (3.7) as

gay — IKLchKXyL + (2/1'6)11{(4))((&1(“7) —_ 6—21(4)(4)7"0(“)"
(3.17)

An identification term by term, with the general de-
composition (3. 8), yields

Joy = IKLXaKXyL’ (3.18a)
by=c, = (ic)_11K(4)XyK’ (3.18b)
¢ = 2] W@ (3.18¢)

Note that 7L js a quantity fixed for a given “structur-
ed” particle;it is referred to as the material inevlia
density tensor by Kafadar and Eringen.17 1t follows
that 8/KL/9T7 = 0, Thus, by differentiating (3.18a) with
respect to 7 and using (2. 43), we obtain
;]B)’ :]67 = 2]0(71/5)0 .

This is the relativistic expression of the equations of
conservation of inertia generalizing those first given
by Eringen. 7

From (3.9b) and (3. 19), we get the useful result

(3.19)

Jap#t® =— jugu® = 0. (3.20)

A straightforward calculation, using (2.42) and (3.8),
leads to an equivalent form for (3.6):

K= 5jgyv*PuY + 30, v, — s egqpucits, (3.21)

where we used (3.20).

Since, in the nonrelativistic limit, we cannot find any
classical equivalents to the quantities b7 and e, we
shall set

b, =0, e= 0, (3.22)
or, equivalently,
[¥@ =0, [WW_=y, (3.23)

which assures the spacelike character of the inertia.

Thus we can write (3.6) and (3.12) in the forms

K = Yjp,veb0,7, (3.24)

(3.25)

1.
K= 30,5080 = 30,0%= 3j,gV°VE.
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Finally, we note that the derivative of K with respect
to the proper time 7 is (cf.Kafadar and Eringenl?)
oK 2

— = — (0, )V,
ar ot ™

(3.26)

4. VARIATIONAL PRINCIPLE FOR RELATIVISTIC
POLAR MEDIA

A. The Action

With any tube (®) C V4, swept out by the material
body (B) as time goes on, we associate the following
action:

A=—py, (4.1)
in which A is the Lagrangian density and ¢ is the re-
lativistic strain energy function. For a nonlinear
polar elastic medium, a natural choice for the set of
arguments of Y is

A
X , B

— 4
a= ®) Ad4o,

d (g)B , d(g)ﬂ’A N

(4.2)

The arguments of ¥ must, of course, reduce to their
classical analogs in an instantaneous rest frame.
Thus, on account of (2.9) and (2.10),a reasonable set
of arguments seems to be

XK, Ry, X gL (4.3)
with
XK,auo‘ =0, PQBXK'B EXK,a,
DEF N _
Xk, = Phx g, JC“KMH =0, PO 3eHy = 3o (4.4)
DEF

. )E A i . =
Xipp = PRoxganX s Xrgpu, =0, PO gt =X,

In a rest frame, 3C#, and ¥*;; reduce to x*, and
X* k. of Ref. 16,

With the choice (4. 3) of constitutive arguments we
see that i depends on x*, and x#,,, only through 3¢,
and X!, i.e.,we have the

PXE Xty X)) = WXE Teky, 0 ) (4.5)
if the following identities are satisfied:
2y )
ub——— =0, u, v =0,
aX“K « aX“K:Ot (4.6)
d d '
u v =0, U, —d/— =90
Ox%g BXK'a
It follows that
5 2 b 0
IJ/ = lp PO(.“’ lP-—: w P"“xo‘L. (4.7)
Oxty  0X%y XFgia  OXVgy

B. Constraints

The directors d(,, are mutually orthogonal and have
unit lengths. These constraints are taken into account
by introducing the ten Lagrange multipliers 9, in
the supplementary term to be included in the Lag-
rangian:

(&)
A= %pﬁﬂ(w)(g)(d(w)“d(ﬁ)p — §(w)),
Note that the matrix M, is symmetric,

With the choice (2. 29) and the notations (2. 32) a more
explicit form of A is
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A = o (xbpx, b — 6%) + 30M(ou, +c?), (4.8)
in which we have set

E)Tl(4)(4) E—czm. (4.9)
The expression (4. 8) generalizes the term 3pM (uu,,
+ ¢2) introduced by Maugin and Eringen,40

We introduce the spin through an already-varied
term.46 The form of (2.43) suggests the introduction
of an anhalonomic, i.e.,nonintegrable, four-angle
variation w8 by

§was DEF

Ple,ox7x xPE,

(4.10)
bwebyy; =0, u,6wB =0, Obw*=—pwbe,
To take account of the spin, we then insert the follow-
ing integral:

W = .1y POapb@bdtv (4.11)

into the variational principle.

For each basic argument varied in the Lagrangian
density,i.e., the classical motion and the x's (or
equivalently we8), we introduce indeterminate multi-
pliers f*, T*, L, and m, in (®) and on (2®) by

* . [ 4, _
oW —/((B-F) pf 0x, dtv j(aa;—r

—_ mddy —
j(&_r)meOw dty J(am-r)

y To0%y d3s
mwéwwd3s. (4.12)

Here (I') is a discontinuity surface in (®) whose unit
positive normal is denoted by N,. The terminology
associates a physical significance to each of these
multipliers namely: f¢ is the four-body force, 7% is
the stress 4-vector, L, is the body couple, and m, g
is the microstress tensor {or bivector). We have

Je=fus+ o, f == uy,
fa=Pa fv, fu, =0, (4.13)
L=—1Lgy, L*Puy,=0, (4.14)
My = — Myy- (4.15)
Finally the variational principle reads
5@+ 6W + sW* =0, (4.16)
where @ is given by
Q= g, N,
A = —py + 5o (xk e x b — 8%)
+ 3pM(utu, + c2), (4.17)

and 6W and 6W?* are respectively given by (4.11) and
(4.12).

5. THE VARIATION

The d-variation is defined as follows: The fields

associated with material points in V4 are considered

to depend on a parameter A, e.g.,
x* =x2(XK 1)), etc. (5.1)
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It is assumed that for A = ) these quantities describe
a given state of the body. The variation is then de-
fined as:

ad — i
Oxa = o lxx L O, etc (5.2)
Of particular interest are the following results:
GXK,a:—XK.B(GxB)m, (5.3a)
op = — pP,(6x8),,, (5.3b)
8(d4v) = 6%(6x8),, dv, (5.3¢)
buc = (6x%),\u*, (5.3d)
6Py, = ¢ 2(6x7),, uMP, u, + Pyyu,), (5.3e)
6($,0) = (69),0,— $,4(6%7);,. (5.3f)

The latter relation valid for any tensor ¢ is derived
as follows: Consider 6(¢, ) where ¢ is any tensorial
object. We have

5(9,,) =0(., X2 ),
where

X5 = (XK _jict,), A=1,2,3,4, K=1,2,3.

Carrying out the variation, we obtain
6(p,,) = 8(¢,)X> , + ¢, 06(X2 )

upon interchange of the § variation and the derivative
with respect to the generalized material coordinates
X5 = (XK icT),and,using (5. 3a), we obtain (5, 3f).

We also note that
0x%*L = xpr0weB,

6(XpK-'B) = (X 7K6w“y):b"~ X#K.' A(éxx);ﬁy (54)

G(X“KXpL —0k) =0.
In performing the variation of various integrals we
also need the generalized Green-Gauss theorem:
o diy = Atn d3s — [ [AY]N_d3s..
((Er)A"‘"d v f(ace-r) "o j(r)[ 1N, Sr(s 5)

We now carry out the variations indicated by (4. 16).
Upon using (5.3),(5.4), and integrations by parts, with
the help of (5.5), we obtain

f((B_r)(TaB,‘B - pfa)éxad4v +f(r)[Ta66xot] Nﬂdssr

(T*Bng — T bx,d3s _f(a(B—r) (m"‘“B n, — mua)

X fwhbd3s + j&_ F)(m“pa;a" PG+ pLyp— pgya)éwﬂﬁd‘lv

_j(aoa— )

* j(I‘) [m“pﬂﬁwuﬂ] Nadssr =0, (5.6)
where we have defined
Tab = uoyb — [Ba,  [Bo = fBa + fBa, (5.7
Y
w=pON + =), (5.8a)
c2
i
{tBa =—0p d/ XK. (5.8b)
XK 4
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-~

fBa = oy o = 8 AL :
tPe=—p XHg P = =P ot L (5.9)
aX“K-'ﬁ
oY Gl
m* . =p = pv x 5.10)
18 O ron XBr =P 2xv,, pXBE¥ Lo (
1, = AL (5.11)
ST '
e 4

Some of these quantities are granted a physical signi-
ficance: T*8 is the tolal slress—energy-momenium
lensor, tB% ig the stress—energy—momentum lensor
due lo the deformaltion field, m~ s is the relativistic
stress momenl! lensor, and w is the densily of energy
(of any kind) per unit of proper volume.

Note that
Phou, = they, —mb vk, (5.12)
8oy, =0, (5.13)

Equation (5.12) follows from (5. 8b), (5.9),and (2.43).
Equation (5.13) is a consequence of (2.15) and the
fact that
mo‘usua =0,

megul =0,  m*uf =0, (5.14)

which follows from (2, 15),(4.6),and (2. 33).

Thus {#® can be written in the equivalent form

fBo = fBa — tBa _ yoags (5.15)
QB:—C‘szP}\V}‘“, '

and with (5.13) we see that «, is a right eigenvector
for T8 with the corresponding eigenvalue — wc2
since

TBuy =— wcu®, (5.16)

If the expression (5.6) is posited to be valid for any
volume in (®) and any hypersurface and for any vari-
ations 6x, and dwk? such that

[6x%] = [6wrE] = 0 across (),

then we obtain the local field equations

ToB,, = pf* in (®—T), (5.17a)
T*ng =T* on (0B —T), (5.17p)
pdm3 — M50 = PLyg + pg[pm in (® —T), (5.18)
Mg hy = Myg O (6® — 1), (5.19)
[T=B] Ny =0, (5.20a)
[m“[“ﬁ]] N,=0 on (I). (5.20Db)

Equations (5.17) and (5. 20a) represent the balance of
energy—momentum while (5.18), (5.19),and (5. 20b)
represent the balance of moment of energy—momen-
tum, An alternative elegant form for the latter may be
obtained by introducing the folal spin—enevgy-momen-
tum tensor 8 by:

Shba — pof‘ﬁua — moluBl (5. 21)
such that
SHboy, =0, SHbay, =0, §HBay =— pc2orb,
(5.22)
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Thus .

Sk Ba;a = poHb — ma[pﬁ]m (5.23)
from the equation of continuity (3.3) and the definition
(2.5). If we now add and subtract Ty, to the left-
hand side of (5.18), taking account of 35.7), (5.8),and
(5.21) and raising the indices, we obtain

Spﬁa;a_ Tl = p LB + pslusl (5. 24)

where we have defined

sub = s — Y xwp W Xarx'?s  (5.25)
K 0
.B XakK :p
but we must have
0
skBl=0 and -— =0, (5.26)
ox<

These two equations are consequences of the Loventz
invariance requirement (equivalent to the Euclidean
invariance requirement used by Toupin,5 Maugin,8
Maugin and Eringen22 in classical continuum mech-
anics) postulated as follows:

The balance laws follow from the invariance of lhe
variational principle undev the inhomogeneous proper
group of Loventz (or Poincaré group) Ap. (For more
details see Ref. 40)

Indeed, an infinitesimal mapping generated by the Lie
group Ap is written

x*H = (8 + €9k )xv + db, (5.27)
where € is an infinitesimally small, 2 is a constant
skew-symmetric 4 X 4 matrix, and d is an infinitesi-
mally small constant 4-vector. If one requires the
relativistic strain energy function ¢ to be invariant
under the mapping (5.27),then Eqgs. (5. 26) follow. The
first-order partial differential equations (5.26) can
be integrated. A solution is given in Sec.8 on relativ-
istic objectivity. With (5.26) satisfied, equation (5. 24)
takes the canonical form of a balance law of moment
of energy-momentum (see Grot and Eringen39):

Suﬂam_ T8l = prB.
6. DETERMINATION OF THE LAGRANGE MULTI-
PLIER M

We perform the differentiation in (5,17a) and multi-
ply the result with «,. Upon using (3.3) and (4.13),
after some manipulations, we obtain

— PCZIM— piy — 1% uy — mBEN vy

oY L

+ XFgg T O X)\LX}\K:ﬁ X'g = — psz. (6.1)

X k: 8 oxt .
Contraction of (5.18) with v8*# yields

. W .
pU#BUB“ = My iq VOE = pLypvBE — p — Xu

- . XuK

+p oK ia Xtk (6.2)

aX“L:a
In establishing (6.1) and (6. 2) we have made use of
(2. 43) and of the relation

KBK:aXBb:—XﬁKXBL:a’ (6.3)
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which follows from (2. 25). Note that, upon using
(4.6d) and (2. 15), we have

a;;: K ) (6. 4)
aXK , XK

e g =— U,y =—p

On adding (6.2) to (6.1), we get
C29M + ) = (c2f — L, gvBH) + 0, vB¥

(Y g, Y
XK A T axF g ’
B uK K:B (6.5)

We notice that the last term is nothing but { and that

&ﬂﬂvﬂi‘ :%opﬂvﬁ“. (6.6)
Hence

czfﬂlzéo”vﬂﬂ +(02f—L“Bv‘3“). 6.7)
If we assume that

f= c'2L“Bv5“, (6.8)

then, by integration over proper time, (6.7) yields

c29M = c2 +§o“6v3“, (6.9)
where c¢2 (the density of rest energy) is the constant
of integration. We have thus the final form of the
total stress—enevgy—momentum lensor,

Tob =p(l +Yc2 + 3¢720, ,wBl)ucud — b

—cZmbrky, ue, (6.10)

while the 4-force reads

fo=fa +c'2LquB“. (6.11)
Equations (3. 3), (5.17), (5.19), (5. 20), (5. 24) subject
to (5. 26) with the definitions (6.10), (6.11), (5. 8b), and
(5.10) are in agreement with the results previously
obtained by Kafadar and Eringen.17 However, we must
emphasize that the present work, in contrast to Ref.
17, is limited to nondissipative processes.

7. EQUATION OF BALANCE OF ENERGY

The equation of local energy balance has already been
obtained in the process of determination of 9. Indeed,
with the known values of 9 and f, (6. 1) and (6. 2) can
be combined to yield

Y — mB“YVyp;B + tﬂa;ﬂua

2y EIY) . V) )
+p g+ CTINEG. SE T
(aX)'K X K aX)\K:y Xrk IXyKin X"k
X Vyu = 0. (7.1)

~

The last term is none other than — ¢[82ly, from
(2.25) and (5. 8b). Finally, upon use of (6.4§,we
obtain

pr —mBtyy o —t8%u g +vg) =0,

TS (7.2)

which corresponds to the energy equation of Kafadar
and Eringen (with p® = g* = 0 and the nonrealistic

X« and X<P null). The relativistic Cauchy's equa-
tions are obtained by applying the projector P¢, to the
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equations (5.17a) and (5.24). We refer to Kafadar and
Eringenl? for these results,
8. RELATIVISTIC OBJECTIVITY

We use herein the results of Séderholm42 already
used in Maugin and Eringen,40

Starting with the relativistic strain energy function
' :l[/(XK,a, JC“K’ x“KL)’ (81)

we say that { satisfies the principle of relativistic

objectivity in the sense of Soderholm if
-1 . -1

W(F,Jc,x) :W(QF,QW,Q x) (8-2)

where 2 is an orthogonal time-dependent transforma-
tion. For instance, let us select

2o, = X%z (8.3)
Then

Y= ‘D(XQLXK,OL’ X* Lo XH m Xuxr)s (8.4)
but

XP Lk = x*LPuax %k =&k (8.5)
thus 4

Y =Y(C LK Ty, ) (8.6)

where we have defined the inverse velalivistic Cos-

-1
serat deformation € LK and the relativistic wryness
lensor T ;. bY

-1
CLE= yob XK v Trim = X"y Xuxr (8.7)
Only the skew-symmetric part in K and M of T has

to be considered. The 18 independent components of

& and I form a minimal function basis for Y. It is
straightforward to verify that (8. 6) constitutes a
solution for the partial differential equations (5. 26).
The requirement of relativistic objectivity and the
Lorentz invariance requirement lead therefore, in
the present case, to the same functional form for Y.
(This is to compare to the classical nonlinear theory
of elasticity where coordinate frame invariance and
objectivity yield the same result. Hence the study of
objectivity is not worthwhile in the present case.)

With (8. 6), the constitutive equations (5. 8b) and (5.10)
become

50
_1‘1’ HMY N

t}”‘:—p X
9§ MN

(8.8)

mMarl =p X ax gt g

0 FKLM
We have thus established a variational principle which
provides the nondissipative counterpart of the gene-
ral theory of relativistic polar media of Kafadar and
Eringen,

9. PROSPECTS

The presentation of directors given in Sec. 2 is some-
what more general than the notion of micromotion of
Kafadar and Eringen and, therefore, may help to solve,
or at least to formulate, a set of equations for the
geneval theory of relativity with nonsymmelric
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energy—-momentum tensor. This attempt is not to be
confused with the unified field theory ambition (i.e.,
we do not aim at describing all field phenomena in
terms of geometrical objects). We just mention the
fact that a generalization of the concept of micvo-
morphic media (cf. Eringen and Suhubib), more res-
trictly of polar media could find place in general
relativity as was pointed out by Eringen47 and dis-
cussed by Kafadar and Eringen,17

In general relativity [Einstein (1916)], we have the
Einstein equations

Gab = gTob 9.1)
and the balance law of energy—momentum

Teb =0, (9. 2)
The Einstein-Cartan tensor G8 is defined as

GaB = RoB — LgaBR, 9.3)

where R2f is the Ricci curvature, R is the scalar
curvature, and g®8 is the Riemannian normal hyper-
bolic symmetric metric of the universe manifold.

k is a constant proportional to Newton's constant of
gravitation. In (9.1), the lhs has a pure geometrical
significance, the rhs representing the source of
energy-momentum (e.g., the electromagnetic stress-
energy-momentum tensor in vacuum).

Equation (9. 2) follows from (9. 1) since there exists
the demonstrable identity

(9.4)

It seems that a possible generalization could be to
add to the motion x« the set of directors d(® (£ =

1, 2, 3,4) (here we do not take d4) « u) and to add to
(9.1), (9. 2) the two equations

Sabs  — Tlas) = Q, {(9.5)

FaBu(K) o §eBr {9.6)
By the foregoing statement, we mean that (9.5) and
(9.86) are, respectively, the set of dynamical equations
and the geometry-source relations that could supple-
ment (9.2) and (9.1). £(K) is an “ad hoc” tensor-
valued functional of the torsion tensor K aﬁy with
- B

K8, =Ti8 (9.7)
where I' #_ is the connection defined independently
of the metric g ;. The latter is no longer symmetric.
Since (9.5) is due to the consideration of directors
d®, T' 8 must be linked in some way to the d®). A
suggestion provided for by the modern theories of
dislocations is

F[OLB)/] = d(&)BV[ad(g)y]’ (9.8)
where Vv denotes the covariant derivative with res-
pect to g,,. This is, of course, a mere conjecture
that could be considered as a starting point. Such an
ambitious project is, however, beyond the scope of
the present article and is left for further investiga-
tions.
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be useful to construct identities associated with variational principles for quantities other than scattering para-
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1. INTRODUCTION

There exists a variational principle for almost all
scattering parameters @, of the form

<Q>var =@ + (¢t »(H — E) ¢t) =@, + ¢tT[(H —E) & ]’

where ¢, is a trial scattering wavefunction whose

asymptotic form determines the trial estimate @, of
@. Though the entire discussion is much more widely
applicable, we will, for simplicity of discussion, res-
trict the analysis to the case of potential scattering,
and, further, to a partial wave analysis. With 7, the
exact phase shift for the /th partial wave, the Kohn
variational prineciple! can be written as
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1. INTRODUCTION

There exists a variational principle for almost all
scattering parameters @, of the form

<Q>var =@ + (¢t »(H — E) ¢t) =@, + ¢tT[(H —E) & ]’

where ¢, is a trial scattering wavefunction whose

asymptotic form determines the trial estimate @, of
@. Though the entire discussion is much more widely
applicable, we will, for simplicity of discussion, res-
trict the analysis to the case of potential scattering,
and, further, to a partial wave analysis. With 7, the
exact phase shift for the /th partial wave, the Kohn
variational prineciple! can be written as
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(tanm,),,, = tann,, — (2m /A2k) [ &,,(H — E) ¢,,dr, (1.1)

where the integral runs from 0 to ©. The exact wave-
function ¢, is defined by

(H-—E)d)l(r):O, H:HO +V,
2 2
By (CELEN)
2m dr? ¥2

&,(r) ~ sin(kr — 31n) + tann, cos(kr — 17), ¢,(0) = 0.
(1.3)

The trial wavefunction ¢,,(r) satisfies ¢,,(0) = 0, and
specifies the trial phase shift %,, through the require-
ment that

¢, r) ~ sin(kr — $1m) + tann,, cos(kr — 3Im). (1.4)
There exists an identity2? very similar in form to the
variational principle (1. 1), namely,

tann, = tann,, — (2m /n2k) fcpl(H ~ E) ¢, dr. (1.5)
This identity is readily verified via integration by
parts. Analogous identities exist3 for other scatter-
ing parameters including those associated with break-
up processes. Such identities will be referred to as
“variational identities in scattering theory.” The iden-
tity (1.5) leads immediately to the variational prin-
ciple of Eq. (1.1); the recognition that (H — E) ¢,;is a
first-order term makes it clear that the replacement
of ¢, by ¢,, leads to an over-all second-order error.
With minor modifications, Eq. (1. 5) can also be used
to generate the Hulthén4 and Schwinger versions of
the variational principle for tann,.5.6 More signifi-
cantly, the identity is an excellent starting point for
the development of variational bounds. Kato2 showed
that Eq.(1.5) can be employed to yield rigorous upper
and lower bounds on tann,, provided it is possible to
estimate solutions to an associated eigenvalue equa-
tion, and he and others? did some work along these
lines. Shimamura8 used a somewhat extended version
of this method of Kato's to obtain very good (though
not wholly rigorous) upper and lower bounds on the
singlet and triplet s-wave phase shifts in electron-
hydrogen atom scattering. More recently, Miller?®
made another nonrigorous (but much simpler than
Shimamura's) application of the “variational identity”
to obtain with rather less effort correspondingly non-
rigorous (but nevertheless also often very accurate)
upper and lower bounds on tan7n,. Furthermore,
Bardsley, Gerjuoy, and Sukumari0 have shown that

the nonrigorous approximations in Miller's approach
can be avoided in some circumstances, thereby pro-
viding truly rigorous upper and lower bounds on tann,
for nondefinite H — E without having to solve the asso-
ciated eigenvalue equation of Kato2 or Shimamura.8
Spruch and Rosenberg and their collaborators showed
some time ago that variational bounds can be obtained
on a very wide range of scattering parameters6.11,12
without introducing the generally cumbersome auxi-
liary eigenvalue problem. They recast the identity
into a form in which the only unknown expression is
the diagonal matrix element of a positive definite
operator and is therefore of well-defined sign, and
applied their formalism to a number of problems in-
cluding the scattering of electrons and positrons by
hydrogen atoms and the scattering of neutrons and
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protons by deuterons. The method is particularly
simple for zero incident relative kinetic energy, 6.11
and, even for the nonzero energy case, is applicable
to a wider class of problems than is the associated
eigenvalue approach.

In view of the foregoing, it is clear that given any
variational principle, it is interesting to attempt to
obtain an identity associated as closely as possible
with that principle. We will concern ourselves with
three such variational principles, each involving an
unknown function ¢, defined by a differential equation.
The first variational principle is an estimate of

B = g%, involving ¢ linearly, with g a given function.
The second is an estimate of (W) = ¢*W¢, involving ¢
quadratically, with W a given Hermitian operator. The
third example involves the value of a function ¢ at a
point, where ¢ itself is defined by a nonlinear differen-
tial equation; a particular example is the phase ampli-
tude method for determining the phase shift for poten-
tial scattering,

2. AN IDENTITY ASSOCIATED WITH THE VARIA-
TIONAL PRINCIPLE FORB =g "¢

Some time ago Borowitz and Gerjuoyl3 showed that
the Kohn variational principle for the scattering
amplitude can be regarded as a special case of a
more general variational principle for quantities of
the form

B =g%9, (2.1)
where the notation denotes the inner product of a
known function g with an unknown function ¢ satisfy-
ing

M¢p =w (2.2)
for some known (¢ -independent) linear operator M,
In the above, the dagger denotes the adjoint (complex
conjugate transpose), and both g and ¢ may be column
matrices, as they would be in the event ¢ were a
wavefunction for a particle of nonvanishing spin. If ¢
has n discrete components, and depends on continuous
variables collectively denoted by r, then, of course,

n
B = Z}l [drg(x)o,(r), (2.3)
2

where the asterisk denotes the complex conjugate.
The Kohn variational principle (1. 1) for tann,, the
Schwinger principles for tan7, and the total scattering
amplitude, and other less well-known variational prin-
ciples for scattering amplitudes also are special
cases of the general variational principle for quan-
tities B of the form (2.1) as is demonstrated in a
companion paperl4to the present paper on generalized
identities.

For these reasons, we have been impelled to seek—
and then to find—a generalization of the identity (1. 5)
applicable to quantities of the form (2. 1). Proving
this generalized identity, and corresponding identities
for somewhat different forms, is the main objective of
this paper.

Whether this generalized identity can be employed to
obtain useful bounds for arbitrary quantities B of the
form (2. 1), as it has proved possible to obtain bounds
for the special B = tann, cases discussed earlier, and
more generally for a much wider class of scattering
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parameters, remains to be seen; no attempt to actually
compute such bounds is made in this paper. Because
the proof is both very formal and surprisingly simple,
the final section of this paper illustrates and verifies
the generalized identity for a trivially exactly solv-
able problem involving a somewhat unusual g, namely,
the problem of the electric field in a spherical con-
denser.

To prove the generalized identity for quantities B of
the form (2. 1), it is convenient to start from the gene-
ralized variational principle for such quantities,13.14
namely

(B)ar =879, + f1 (M) — w), (2.4)
where ¢, is a trial estimate of the exact ¢ appearing
in (2.1) and where f, is a trial estimate of the exact
so-called auxiliary function f. The exact ¢ is speci-
fied by (2. 2) together with appropriate boundary con-
ditions; the trial ¢, normally will be restricted to the
class of functions satisfying the same boundary condi-
tions as ¢. The procedure for specifying the exact
auxiliary function f is as described in our companion
paper,14 namely, one specifies f via the requirement
that the first variation of (2. 4) must be zero if (2. 4)
really is to be a variational principle. In other words,
we must have

6B =g%0¢ + fH{[Mo] —w) + fT[Mép] =0, (2.5)
where
6o =¢,— b, Of=f—~Ff. (2.6)

In (2.5), it has been assumed that M is completely
known, so that there is no term involving 6M; this
assumption is necessary for the derivation of the
generalized identity given in this paper, but may be
avoidable if merely a variational principle for g%¢ is
sought.14 In effect, this last assumption rules out the
circumstance that Eq. (2. 2) determining ¢ is an eigen-
value equation, wherein the eigenvalue appearing in M
cannot be exactly known unless ¢ itself is exactly
known,

Via (2. 2), the equality (2. 5) can be rewritten in the
form
gt + (M6 + f*[MG(b] —(MTNYTe¢ = 0.
(2.7

Therefore, Egs. (2. 7) and (2. 5) will hold, i.e., (2. 4)
will be a variational principle, if13.14

gt + M =0, (2.8)
subject to the condition
frMep] — [M¥f]T6¢ = 0. (2.9)

Usually it is more convenient to replace (2, 8) by its
adjoint,

MY +g =0, (2.10)
which presumably specifies f subject to the boundary
condition implied by (2.9). In some circumstances,
additional boundary conditions may be required14 to
uniquely specify the auxiliary function f. If so, it is
assumed these boundary conditions have been imposed;
however, these extra boundary conditions, though use-
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ful in practice, apparently are not needed for the proof
of the generalized identity, as will be seen. It will be
noted that M T need not be identical with M, i.e., there
has been no assumption that M is self-adjoint. It is
assumed, of course, that the operator M1 satisfies

(2. 9) for a reasonably well-behaved class of functions
f solving (2. 10); otherwise, (2. 4) is not a variational
principle, and the corresponding identity cannot be
demonstrated. In the application of the variational
principle (2. 4), one normally would try to choose a
trial f, satisfying the same boundary conditions as f;
the choice of f, is wholly irrelevant for the present
paper, however.

It will be proved below that for ¢, satisfying the boun-
dary and smoothness conditions required to make it
an acceptable trial estimate of the exact ¢ in the
variational principle (2. 4), we have
B = g%, + [T([M¢,] — w), (2.11)
where B is the exact g¥¢ of Eq.(2.1). Equation (2. 11)
is the generalized identity; the reason for so terming
it is that, in potential scattering, Eq. (2.11) becomes
identified with Eq. (1. 5) when B is identified with
tann,. To be specific, it is known5.6 that
tanm, = — (2m/12) [ dr vj(kr)Vr)o,r),  (2.12)
where ¢, is the function defined by Egs. (1.2) and (1. 3)
and j, is the usual spherical Bessel function. Equation
(2.12) expresses tann, in the standard form (2. 1),with

g =gr) =— 2m/m2yj,(kr)V(r).

With w = 0 and M = (2m /A2)(H — E), the variational
principle (2, 4) then becomes

(2.13)

(tann,) yop = (2m/R2) (— [ dv vj,(kr)V ()¢, )
+ [ arf0)[H — B¢, ()], (2.14)

with the requirements, from Egs. (2. 10) and (2. 9),
respectively,

(H — E)f = vV(r)j,(kr), (2.15)
(2m /52) [ dr{f(r)[H — E)¥6¢] — [(H — E)f}6¢}
:_<f ;—,,M—M%) :zo. (2.16)

Because the exact ¢, vanishes at the origin, and be-
cause, as explained following Eq.(2.4), ¢,, normally
will be required to satisfy the same boundary condi-
tions as ¢,, the variation 6¢ defined by (2. 6) vanishes
atr = 0, so that (2. 16) requires f = 0 at » = 0. Simi-
larly, because Eqgs. (1. 3),(1.4), and (2. 6) imply that
8¢ is proportional to cos(kr — 3ir) as v - «©, Eq.

(2. 16) implies that the nonvanishing components of
fr) as » - © also must be proportional to cos(kr —
3Im) as ¥ > . But if the function ¢,(r) uniquely speci-
fied by Egs. (1.2) and (1. 3) is written in the form

&,(r) = krj,lkr) + x,(r), (2.17)

the function Xz(”) vanishes at v = 0, is proportional to
cos(kr — 3Im) at v = 0, and, by using (Ho, — EYrj,(kr)
= 0, satisfies the equation

(H — E)x,(r) = — V(r)erj,(kr). (2.18)
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Therefore, the function f specified by Eq. (2. 15) and
the boundary conditions stated above must be

f =~ /Ry, = — (1/R) ¢, — krjy(kr)].

If, in accordance with (2. 19), the trial estimate f; of
the exact f is chosen to be

ft =—- (l/k)[d)” - k’i’jl(k’}’)],

with ¢, satisfying (1. 4), substitution in (2. 14) yields

(2.19)

(tanm,) oy = (2m/B2)( [ dr vj,(kr)[(H, — E)g,,]
—(1/k) [ dr ¢, [(H — E)y,)). (2.21)

By recalling (1. 4), integration by parts then shows, by
using (H, — E)rj,(kr) = 0 once again, that

o0
(2m/R2) [ dr 7j,(kr)[(Ho — E)$,] = tann,,  (2.22)
i.e., shows that (2. 21) is identical with the usual Kohn
variational principle (1. 1) for tann,. Correspondingly,
using the present values of f and g, Eqs. (2.19) and
(2. 13), respectively, in (2. 11) yields, by recalling
(2.12),

tann, = (2m/B2)( [ dr 7j,(kr)[(H, — E)$,,]
— (/) [dr ¢,[(H — E)¢,,));  (2.23)

by using (2. 22), this is seen to be identical with the
identity (1.5). Admittedly, the foregoing has not been
the simplest means of deriving either the variational
principle (1.1) or the identity (1. 5), but the above
derivations of (1.1) and (1. 5) do serve to justify the

terminology “generalized identity” for (2. 11). Further-

more, we have deliberately chosen to go through the
above derivation so that we can explicitly analyze the
structure of the auxiliary function f. This is really
not necessary for the establishment of the identity

(2. 23), and it is easy to verify that multiplying the
defining equation for f, (2.15), by 6¢ and using (2. 12)
and (2. 16) would lead immediately to (2. 23). This
feature that the identity can be established once the
equation for f is known, without the need for solving
this equation for f, will be demonstrated below in
(2.31)-(2. 33) when we establish the general identity
(2.11) by such a procedure, and again in later sections
for the case of analogous identities.

Before proving the general identity we will consider
yet another derivation of the Kohn variational prin-
ciple and its associated identity starting from an
alternative to (2.12). This is done both because it is
a shorter derivation and because the auxiliary func-
tion will take on a different structure from the one in
{(2.19), thereby demonstrating in a particular case the
general resultl4 that various alternative forms of the
variational principle can be written down and these
may involve different auxiliary functions. We begin
then from the following definition of tann,

tamn, = (2m/h2k)[(H, — E)¢,]"V,

where ¥ is the regular solution of (H; — EW =0,
appropriately normalized, and is k7j,(kr). That (2. 24)
defines the phase shift is seen perhaps most simply
by looking at the combination [(H, — E)¢,]™W

— ¢f[(H, — EW] and rearranging this in the form of a

(2. 24)
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surface term. Evaluating this term on a surface at
large » yields tan7,.

Exactly similarly, we have

tann,, = (2m/B2k)[(H, — E)¢,,|"W; (2. 25)

this is nothing but (2. 22). The variational principle is
written down in a routine fashionl4

(tann) o, = (@m/i2k){[H, — E)¢, )"V — /I [(H~E)o, ).
(2.26)

The equation for the auxiliary function f is obtained
by equating to zero the coefficient of 6¢ in (2. 26);
this gives

[Hy —E¥¢]W — fT[(H — E)s¢] = 0.
Integration by parts transforms this to

— (@ —Brie+ 5 [(F -0 B2

ady df *
+(d7—d7>6¢ﬂ =0

0

(2.27)

The expression in (2. 27) will vanish if the surface

terms vanish and if
(H— EYf=0. (2. 28)

By recalling now from (1. 3) and (1.4) that 6¢ and ¢

vanish at » = 0 and that asymptotically 6¢ is propor-

tional to cos(kr — 3Iw) and therefore dd¢ /dr to

sin(kr — $1n), it follows that the surface terms in

(2. 27) will vanish if f vanishes atv =0 and if f —

is asymptotically of the form cos(k» — 3In). From

(2. 28) and these boundary conditions, it is clear that

f:(pz-

Replacing f,"in (2. 26) by f%, so that we have an iden-
tity rather than a variational principle, and using
(2. 25) and (2. 29), we obtain

(2.29)

tann, = tann,, — (2m/%2k)¢,'[(H — E)¢,,].  (2.30)
This is, of course, identical to (2. 23) and represents
an alternative, somewhat shorter derivation of the
identity. What is particularly worth noting is the
difference between f in (2.29) and in (2. 19).

Finally, we prove the identity (2.11) in its general
form, without specializing as above to the case of the
tangent of the phase shift. The proof is surprisingly
simple. We start with the equations defining the
auxiliary function, (2. 8) and (2.9). Operating with
(2.8) on 5¢, we obtain
g7o¢ + [M'f]76¢p = 0. (2.31)

By using the boundary condition (2. 9) and (2. 6), this
becomes

&y — @) + fHM(d; — ¢)] = 0. (2.32)
Since M¢ = w, this becomes
gT¢ =gT¢t +fT([M¢¢] —w), (2.33)

which is the sought for identity.
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This procedure for finding the identity from the defin-
ing equations for the auxiliary function seems to be a
generally valid one. It will be used again in Secs. 3
and 4. We also note that the variational principle

(2. 4) is retrieved from the identity (2. 33) by the re-
placement of fT by f/f; such a replacement introduces
only a second-order error because the term multiply-
ing f* in (2. 33) is already of first order.

Finally we conclude this section with a special case
of the identity (2. 33) and its associated variational
principle (2. 4), namely the case when the value of the
continuum wavefunction ¢, at some point 7, (say) is
desired. The function g is, therefore,5(r, — 7). The
identity takes the form

d)l(ro) = (pzt('ro) + (2m/h2)fT[(H - E)d)lt(’r)]- (2- 34)

The equations defining f, analogous to (2. 9) and (2. 10),
follow from equating to zero the coefficient of 6¢ in
(2.34). We have

(2m/R2)H — E)f(rgs7) = —06(ry —7), (2. 35)

and
(2.36)

<~fd%6¢ +5¢%>°°

The discussion after (2. 28) applies to the analysis of
(2. 36) and leads to the boundary conditions on f:
f(0) =0, f ~ const X cos{kr — 3In). (2.37)
(2. 35) and (2. 37) together with the usual analysis of
(2. 35) as » passes the fixed point 7, define completely
the Green's function f which goes into the identity
(2. 34). Such identities and variational principles for
the value of the wavefunction itself at a point may be
useful because of their wide applicability. Once one
has a wavefunction which is itself variational at every
point, any matrix element evaluated with it will auto-
matically be a variational estimate. As an identity
valid for any ¢,,, (2. 34) with the choice ¢, ,(r) =kvj,(kr)
becomes the usual integral equation for ¢,.

3. AN IDENTITY ASSOCIATED WITH THE VARIA-
TIONAL PRINCIPLE FOR (W) = ¢TW¢

A variational principle for {W), for W an arbitrary
linear self-adjoint operator, has been known for some
time, work having been done by Dalgarno,15
Schwartz,16 Delves,17 and many others. With E
assumed known experimentally essentially “exactly”,
with ¢ defined by

Hp =Ep, ¢T¢ =1, (8.1)
and, with an auxiliary function f defined by

H —E)f = — [W — (W], (3.2)

/T =0, (3.3)
we have
W) yar = 01Wo, + fHH — E)p, + [(H — E)¢,]"f,. (3.4)

Here ¢, and f, are approximations to ¢ and f, respec-
tively, and ¢,'¢, = 1. An identity is rather easily ob-
tained.18 It can be cast into the form

W) = W) ar — S,

var
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where the second-order error term S is given ex-
plicitly, but it does not appear to be possible under
most circumstances to determine the sign of S. Were
it possible to determine the sign of S, one would have
a varviational bound on (W),

To obtain an identity of the form we are presently
interested in, we take the inner product of ¢, with
(3. 2) and of the adjoint version of (3.2) with ¢,, add,
and use the hermiticity of H — E to obtain

Hoto + ¢To) W) = [l — E)g]f +f1(H — E)g,

+ oW + 6 TWo, — 3o + oTe) W) (3.5)
We have decomposed the term proportional to (W) in
order to be able to more readily recapture the varia-
tional principle from this identity. We begin by noting
that the coefficient of (W), on each side of the equation,
differs from unity by a term of second order. We note
further that the replacement of f by f, introduces a
second-order error, as does the replacement of f* by
/i . Finally, we note, on replacing ¢, by ¢ + ¢, that

TWo + ¢TWe¢, — (W) differs from ¢, W¢, by a term
of second order.

Analternate version of the identity has been obtainedl?9
which employs a Green's function rather than the
auxiliary function f. Starting from this form, upper
and lower bounds on (W) have been obtained which,
however, are unfortunately not variational; the error
is of first order. Applications have been made to the
evaluation of {r) and (»2) for the ground state of
helium.

4. AN IDENTITY INVOLVING A FUNCTION
DEFINED BY A NONLINEAR DIFFERENTIAL
EQUATION

We consider now an identity and its associated varia-
tional principle involving a function ¢(r) defined by a
nonlinear differential equation of the form

9 _ [itr) + ntrs )2, (4.1)
and by boundary conditions, where j and » are known
functions of . Such a differential equation arises, for
instance, in the phase-amplitude method2? for the
determination of the phase shift for potential scatter-
ing. In this case ¢ is tan6(r),j and n are functions
that involve the potential, the energy and standard
functions like j,(kv) and n (kv). With the boundary con-
dition at the origin, ¢(0) = 0, the equation is integrated
outward to infinity and ¢ () gives the value of tanj(cw),
that is, the “true” phase shift.

A variational principle for ¢(»), with ¢(») defined by
Eq.(4.1) (or by similar, more general, nonlinear
equations) can be written down in routine fashion.14
It is found to be

d¢,

bvael®) = 0 — [, (TG +nopd)ar, @2

where ¢,(r) is a trial function chosen to vanish at the

origin and f,(r) is a trial estimate of the auxiliary
function f which satisfies the equation

df .
372—271(] +no)f (4.3)
and the boundary condition f(©) = 1. We will demand
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that f,(©) = 1. It is not difficult to verify that such an
f makes the estimate ¢, () stationary. As in Secs.
2 and 3, we derive an identity for ¢ (), starting from
the equation which defines the auxiliary function,
which is now Eq. (4.3). Multiplying this equation by
¢,(r) and integrating, we have, after one integration by
parts,

o {d
0 = [ 7 (St~ 2m + o).

o (4.4)

This equation is obviously also valid for the particu-
lar choice ¢,r) = ¢(r). Subtracting Eq.(4.4) as it
stands from (4. 4) with ¢, replaced by ¢ and using
(4.1), we have the identity
o deo, .

o) = 0 — 1)t = G +no?)

— (2, — ¢)n(j + mb)]{ ar. (4.5)
The replacement of f by f, obviously introduces only
second-order error terms since each of the terms in
curly brackets is of first order. Further, it is trivial
to check that the replacement of ¢ by ¢, in the square
brackets introduces a second-order error, propor-
tional to (¢, — ¢)2. We can thus readily retrieve the
variational principle (4.2) from the identity (4.5).

5. THE GENERALIZED IDENTITY AND THE
ELECTRIC FIELD IN A SPHERICAL CONDENSER

The validity of the identity (1. 5) normally is verified
via integration by parts, and this verification provides
one illustration of the correctness of our simple for-
mal proof [Egs. (2. 31)-(2. 33)] of the generalized
identity (2.11). However, because the functions and
operations involved in the usual identity (1.5) are so
well behaved, we have thought it advisable to verify
(2.11) for a problem which—though trivially exactly

solvable—involves rather less well-behaved quantities.

In particular, we consider the problem of the deter-
mination of the electric field inside and at the spheri-
cal plates of a spherical condenser with spheres of
radii 1 and 2. In this problem the potential ¢ obeys

2
— 2 d2¢ + 9 as _ 0,
dr? dr
(5.1)

and the boundary conditions on ¢ (the potentials at the
spherical plates) are taken to be

$(2) = 1.

M¢ =r2v2¢ :5‘;{_ <7.2»(d;§_)

o(1) =0, (5.2)

Our objective is to find d¢ /dy in the domain 1 <y =< 2.

Of course, it is a trivial exercise to determine that
the desired exact ¢ satisfying (5.1),(5.2) is

o =2[1—-@1/7)], 1=r=2, (5.3)
so that the desired d¢ /dv is

¢ _ 2

L= l=7r=2. 5.4

dr 72 (5.4)

For our present purposes, however, we shall pretend
that we have been unable to determine the exact ¢

and therefore are endeavoring to estimate d¢ /dy from
a variational principle of the form (2.4). The possible
complication—and the reason we are examining this
particular problem—is that B = d¢ /dr can be put into
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the form g*¢ only by the device of introducing a sin-
gular g(r); the requirement that d¢ /dv at » = 7, be
equal to £¥¢ requires that

4
dr’
For 7 different from 1 or 2, integration by parts
leads to

&) =06(r —7y) 1=r=<2,

g(7)=—%6(1'~70), l=r=2.

We do not actually need to know g(r), since the varia-
tional principle involves g only in the form g*¢,, and
the statement g¥¢ = d¢ /dr suggests the choice g¥¢, =
d¢,/dr. We have discussed the form of g(r) to show
that the values v, = 1 and r; = 2 might have to be
treated differently than the values 1 <, < 2, and to
exhibit the singular nature of g(»), which suggests that
there might conceivably be difficulty in applying the
variational principle (2. 4) to the present problem.

Nevertheless, let us attempt to construct the varia-
tional principle for d¢ /dv. Consider first the field at
a spherical plate, at ; = 1, say. Then, according to
(2. 4)

d¢ do 2
<B>Var - <a?>r =1>/ar B 77;)1':1 i fl @ fﬂ'sz¢t.
(5.5)

The trial function ¢,(r) is supposed to be well behaved
and to obey the boundary conditions (5. 2); f, is a trial
estimate of the exact auxiliary function f, whose defin-
ing conditions now must be determined from the re-
quirement that the first variation of (5. 5) be zero,
i.e.,from the requirement [as in (2. 5)]

2 2
8B =5 %?)H + fl dr fr2v25¢ + fl dr(6f 2 v2¢
_d 2 d25¢ d
=<5 + 2 409 2 =
= ¢>H A drf(r T o¢> (50,6)

where we have used (5. 1) and have interchanged the
operators & and d/dr at v = 1, Integration by parts
reduces (5.6) to

d d 2 ar |2
L 2f & — 250 &
dar M))r:l +rif dr 5¢[1 r20¢ dr

1
2
+ drw(%(yz%) = 0.

Because 6¢p = 0 at» =1 and» = 2, but is otherwise
arbitrary (except for being well behaved), Eq. (5. 7)
implies

(5.7

d 2@\ _ — =
W(r d—,r>—0; 1——7——21 (5.8)
with the boundary conditions
f)y=1, f2)=0. (5.9)

In the problem under present consideration, the gene-
ralized identity (2.11) is [recalling (5. 4)]

_ d¢) d¢,> 2 d < dgb,)
:d7r:1 =2=d—7r:1 +f1 d?’fa? TZW.
(5.10)

It is readily verified via integration by parts that
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(5. 10) indeed is true for any well-behaved ¢, satisfy-
ing (5.2) when f is the solution to (5.8) subject to
(5. 9), namely

= (2/7) -1,

The problem is somewhat more complicated when the
field is desired at an interior point of the condenser.
Variational principle (2.4) now is [to be compared
with (5. 5}]

where, of course, f, and its corresponding f in (5.12)
need not be—and in general are not—identical with the
f: and corresponding f of (5.5) and (5. 11). Varying
(5.12) yields, as in (5. 6),

17 =<2, (5.11)

do, 2
_ 2y2
= dV)r:rO+f1 dr f,r2V2¢,,

1<7r,<2, (5.12)

d 2 2 & 4 > -

6B _d—yw)r:yo +J drf(r 500 + 2 -09) =0,
(5.13)

which is not identical with (5. 6). In fact, it now is
clear that integration by parts, as in (5. ), cannot
possibly yield terms which will cancel d{(6¢)/dr at
¥ =7, unless f(r) and/or df /dr are permitted to be
discontinuous at = r,. In other words, before inte-
gration by parts (5.13) must be replaced by

6B =Ls +1i <fr°_€d [ d)
T ar ¢>‘r:7'0 GLné 1 4 To'e€ "
% |:f (,,2 iz. o + 2r 15¢>J =0. (5.14)
dr2 ar

Integrating (5.14) by parts yields, with v j + = lim__
(ry €,

& 00) Lt i ool +oy 2 ¢>
- (1'26(1) +725¢ Z{, Y > (5.15)
+ < ) o+ fi dr) [w(‘%) <yz %)] =0,

which is to be compared with (5. 7). The presence of
the integrals in (5. 15) again requires that f satisfy
the differential equation (5. 8), but the boundary condi-
tions on f now are quite different from (5.9). To eli-
minate the contributions to (5.15) at» =1 and7 = 2,
we must have

VARIATIONAL PRINCIPLES

f(l) =0,

Also, because 8¢ is presumed well behaved at» =7,
and both 8¢ and d(6¢)/dr are essentially arbitrary at
¥ =7,,to eliminate from (5. 15) the contributions
proportional to §¢ at » =7, it is necessary that

a\ _df
F) ).,

Moreover, to eliminate from (5. 15) the contributions
proportional to d(6¢)/dy at v =7, it is further
necessary that
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fley=o. (5. 16)

(5.17)

— 3 flro+) —flry—)] +1=0. (5.18)
Therefore, the exact f = f(r,ro) must satisfy
1=r<7r
2 (rz 41) =0, 0 (5.19)
ar ar ro<7r=2

subject to the boundary conditions (5. 16), (5.17), and
(5.18). Evidently the auxiliary function f now under
consideration is a Green's function of somewhat
unusual type.

The solution to Egs. (5.16)-(5.19) is

for,vg) =v@[(2/r) — 2],
frsry) =r@(2/r) 1],

l=r <7,
(5.20)
ro<752,

as is readily verified. Again recalling (5.4), the
generalized identity [to be compared with (5.10) and
(5.12)] now is

d 2 d 1 .7 2
B:i) =_:_q_)£> +——fodr<——>
dr vg dr/,, r3l v
dz d
X <rz LPS j-‘)
dr? dr
1 .2 2 a2 d
+— dr(——l> <r i P ¢‘>. (5.21)
rg o v dr? dr

The usual integration by parts demonstrates that
(5.21) indeed is true for any well-behaved ¢, satisfy-
ing (5. 2).
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The response of a random linearly elastic solid is considered. General formulisms are derived that govern the
one- and two-point moments defined on the stress, strain, and displacement fields. The weakly inhomogeneous
solid is discussed within the framework of the derived formulisms. Also, we consider the simplifications that
are introduced for problems that involve two length scales, one defined by the randomly varying material para-
meters and one defined by the characteristic dimensions of the over-all geometry of the solid and of all forcing

mechanisms.
INTRODUCTION

For an important class of engineering materials the
homogeneous linearly elastic continuum represents
an idealization that is valid only on a certain scale of
observation, which may be termed the macroscale. A
closer examination on a finer scale, which is still far
above the atomic scale, reveals heterogeneity although
the model of a linearly elastic continuum is still
valid. This finer scale may be termed the micro-~
scale. Examples of such materials are numerous.
The most important is possibly the polycrystal, which
is an aggregate of a very large number of anisotropic
crystals that are oriented in space in a random
fashion, Each crystal is large enough to be idealized
as a homogeneous linearly elastic continuum. Its
mechanical properties are described by an elastic
moduli tensor with components, referred to a space
fixed system, that do not vary with position in the
crystal. The components of the elastic moduli tensor
for the polycrystal as a unit, again referred to a
space fixed system, do vary with position in the poly-
crystal as one moves across the individual crystals.
A second example of the class of materials of interest
is the fiber reinforced composite. Here, again, the
fibers or the regions of the matrix between fibers are
large enough to be idealized by homogeneous linearly
elastic continua. The parameters that define the
mechanical properties do not vary with position in the
fiber or in the matrix, but do vary with a position
change from 2 fiber to the matrix.

A second feature that is common to the two examples
cited is that the scalar fields needed to define the
spatially varying material properties can only be de-
scribed in statistical terms. That is, the scalar fields
are given by stochastic processes. In this paper we
observe the above described class of materials on the
microscale and give an explicitly statistical inter-
pretation to the problem.

A complete statistical formulation of the problem
would be in terms of probability distribution func-
tionals. The input to such a formulation would be a
probability distribution functional defined on the sto-
chastic processes needed to describe the spatially
varying material parameters. The output would be a
probability distribution functional defined on the sto-
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chastic processes needed to describe the response
measures of the elastic continuum as well as those
needed to describe the spatially varying material
parameters. Using the theory of functionals and
following the work of Hopf,! it seems clear that one
could present such a complete statistical formulation,
although to the author's knowledge this has not been
done. It is to be expected that the functional formula-
tion will be exceedingly complex.

The task we set for ourselves is much more limited.
We intend to concentrate on the lower order statisti-
cal moments and develop a mathematical formulism
that determines the ensemble, or statistical, averaged
response measures [i.e., (7, (x)), (¢;; (X)) and (u;(x));
the mean stress field, the mean strain field, and the
mean displacement field] as well as one that deter-
mines the two-point moments defined by these re-
sponse measures [1.e., (7, (x1)7,, (x2)), (7, (x1)€, (x2)),
(T, (K1), (x2)), (e (K1) (%2), Ce,; (X1, (x2)), and

(u (xl)uj (x2))]. The procedure to be used to accom-
plish the development is a slight extension of one
that has been previously used in a variety of pro-
blems involving statistical continua. Beran and
McCoy? have used it to develop the desired formu-
lism on (7, (x)), (€;;(x)),and («,(x)). A much abbre-
viated rederivation of this same formulism is repro-
duced in the present paper since it serves to clarify
the development of the formulism that governs the
two-point moments. Additional references on the
procedure are cited in the text at appropriate places.

Some words of comment on the physical significance
of the quantities we wish to determine are warranted.
Inherent to the statistical interpretation of the pro-
blem is the idea that we are dealing not with a single
solid, but with an assemblage (ensemble) of solids
that are identical in some way (i.e., appear identical
when observed on the macroscale), but differ in
another way (i.e., appear different when observed on
the microscale.) The meaning of {u,(x)), for example,
is a weighted average of the displacements that one
would measure at the same point in each of the solids
of the assemblage. This interpretation of (ui(x)> is
unambiguous and may always be applied. If, however,
a problem exists for which variations in (¥, (x)) with
a change in position are only measurable for a posi-
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elastic continua. The parameters that define the
mechanical properties do not vary with position in the
fiber or in the matrix, but do vary with a position
change from 2 fiber to the matrix.

A second feature that is common to the two examples
cited is that the scalar fields needed to define the
spatially varying material properties can only be de-
scribed in statistical terms. That is, the scalar fields
are given by stochastic processes. In this paper we
observe the above described class of materials on the
microscale and give an explicitly statistical inter-
pretation to the problem.

A complete statistical formulation of the problem
would be in terms of probability distribution func-
tionals. The input to such a formulation would be a
probability distribution functional defined on the sto-
chastic processes needed to describe the spatially
varying material parameters. The output would be a
probability distribution functional defined on the sto-
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chastic processes needed to describe the response
measures of the elastic continuum as well as those
needed to describe the spatially varying material
parameters. Using the theory of functionals and
following the work of Hopf,! it seems clear that one
could present such a complete statistical formulation,
although to the author's knowledge this has not been
done. It is to be expected that the functional formula-
tion will be exceedingly complex.

The task we set for ourselves is much more limited.
We intend to concentrate on the lower order statisti-
cal moments and develop a mathematical formulism
that determines the ensemble, or statistical, averaged
response measures [i.e., (7, (x)), (¢;; (X)) and (u;(x));
the mean stress field, the mean strain field, and the
mean displacement field] as well as one that deter-
mines the two-point moments defined by these re-
sponse measures [1.e., (7, (x1)7,, (x2)), (7, (x1)€, (x2)),
(T, (K1), (x2)), (e (K1) (%2), Ce,; (X1, (x2)), and

(u (xl)uj (x2))]. The procedure to be used to accom-
plish the development is a slight extension of one
that has been previously used in a variety of pro-
blems involving statistical continua. Beran and
McCoy? have used it to develop the desired formu-
lism on (7, (x)), (€;;(x)),and («,(x)). A much abbre-
viated rederivation of this same formulism is repro-
duced in the present paper since it serves to clarify
the development of the formulism that governs the
two-point moments. Additional references on the
procedure are cited in the text at appropriate places.

Some words of comment on the physical significance
of the quantities we wish to determine are warranted.
Inherent to the statistical interpretation of the pro-
blem is the idea that we are dealing not with a single
solid, but with an assemblage (ensemble) of solids
that are identical in some way (i.e., appear identical
when observed on the macroscale), but differ in
another way (i.e., appear different when observed on
the microscale.) The meaning of {u,(x)), for example,
is a weighted average of the displacements that one
would measure at the same point in each of the solids
of the assemblage. This interpretation of (ui(x)> is
unambiguous and may always be applied. If, however,
a problem exists for which variations in (¥, (x)) with
a change in position are only measurable for a posi-
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tion change that is observed on the macroscale, then
an alternate interpretation of (u,(x)) is possible. This
alternate interpretation is that (u,(x)) is a spatial
average of the displacements that one would measure
in each and every solid in the ensemble. The region
over which the spatial average is to be taken appears
very large when observed on the microscale at the
same time that it appears to be very small when
observed on the macroscale. In applying the classical
elasticity theory to a polycrystal and in interpreting
the predictions in the usual manner, we are implicitly
assuming that the correct formulism on (7;; (x)},
(€;;(x)}, and (u;(x)) reduces to the classical elasticity
formulism under the conditions cited and are also
assuming the validity of the ergodic hypothesis de-
scribed above. The formulism developed by Beran
and McCoy does reduce to the elasticity formulism
under the conditions cited; but, by considering a
specific example,3 they also showed that the solutions
of the general formulism do not uniformly agree with
the solutions of the elasticity formulism in the appro-
priate limit. There will exist thin layers of all bound-
ing surfaces and all forcing mechanisms within which
the classical theory ceases to be valid and within
which the only average that can be discussed is an
ensemble average.

The direct physical significance of all of the two-
point moments is not clear although the significance
of some of the information contained therein is not

to be disputed. For example, the limit of

(73 (x1)7;; (x2)) (no sum) as x2 approaches x!,under
certain conditions, equals (7};(x")), This latter term
defines the variance of the stress tensor for the point
located by x1. Also, the limit of (Tij (x1)e;;(x2)) (sum)
as x2 approaches x1, under certain conditions, equals
2(V (x1)) where V(x) denotes the internal energy
density. Further, if the variation of (7, (xl)'rij (x2))
(no sum) with a change in absolute position can be
observed only for a position change that is measured
on the macroscale, then the Wiener-Khinchin theorem
predicts that (7, (x1)7; ’ {x2)) provides the amplitudes
of the Fourier t{ecomposition of the spatial variations
of 7,,(x) that one would observe on the macroscale.
The reason that the formulism developed in this
paper contains all of the 120 different correlation
functions that can be defined by the stress, strain, and
displacement fields, is not motivated by the physical
significance that can be attached to all of them, but is
rather a consequence of the derivation procedure
used.

The general formulisms are developed in the next
section although a number of intermediate details are
carried out in an appendix. The results are given by
Egs.(16)~(19) and Eqs.(25) and (26). In the following
section we consider the case of a weakly inhomo-
geneous solid for which it is possible to truncate the
infinite series that appear in the general formulisms
thereby achieving a completely defined formulation on
the unknowns of interest. In this section we also con-
sider the two length scale situation previously dis-
cussed and the simplifications that this introduces
into the formulisms, The simplified formulisms are
given by Eqgs.(36) and (37).

GENERAL FORMULATION—SOME BASIC CON-
SIDERATIONS

Referred to a cartesian coordinate system, the equa-
tions governing the response of a linearly elastic
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solid in the absence of inertia effects may be written
in the matrix form

AX =F. (1)
Here, X denotes the response matrix, which is given
by

T(x)

X = ’ (2)

€(x)
u(x)

where the submatrices 7, €, and # contain the com-
ponents of the stress, strain, and displacement fields,
respectively. We write

© T 4(X)
T;;(X)
Ty3(X)
ng(x) = ng(x)
713(x) =T 1(x)
‘ le(x) = T, 1(X)"

’T(x) =

N

€55(X)
€33(X)
2€23(x) = 2€32(x)
2€ 1 5(X) = 2€,,(x)
2€,,(X) = 2€,,(X)

€,1(x) l

e(x) =

U4 (X)
u(x) = {11:;(}()1

us(m)

and note that the subscript associates the component
with a like subscripted coordinate axis. The force
field matrix F is given by

{f (X)}
F = 0 ,
0

where the submatrix f contain the components of the
body force per unit volume, i.e.,

fl(x)
f(x) = {fz(x)}

f3(x)

The operator matrix A is given by

a, 0 0
A= <021 022 0 ).

Q35 433

(4)

(5)

(6)

The submatrices a;; are defined as follows:

a,, = 1

0 0 3 3, 9 O
Gy = a3y = — Ig,

3, 0 0

0 3, 0

0 0 0
a3z = 1 JUSHN IS (M

0 13, 19,

10, 0 13

2% 20y

'2_82 561 0

and a,, is a symmetric 6 X 6 matrix with elements
that are determined by the mechanical properties of
the solid. In the above, I; denotes the 6 X 6 unit
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matrix, and ¢, denotes differentiation with respect to
the x; coordinate.

The random linearly elastic solid is defined as one
that requires stochastic functions of position in the
solid to describe the material properties matrix a,,.

In order to ensure uniqueness of solution, it is neces-
sary to specify boundary conditions, which serve to
restrict the domain of the operator A. At this point
we shall simply require that the boundary conditions
are conditions about which we have sure or deter-
ministic information.

In this paper we intend to develop a mathematical
formulism that is to be satisfied by the correlation
matrix (X(x) ® X(y)). Here X(x) and X(y) are the re-
sponse matrices measured at two different points in
the solid, ® denotes the Kronecker product,? and the
angular brackets denote an ensemble or statistical,
average. In terms of the sumatrices 7, €, and «, the
correlation matrix is written

(1(x) ® T(y)
((rx)® (3 )
(1(x) ® u(y))
(e(x) ® T(y))
(e(x) ® e(y) > (8)
(e(x) ® uly))
w(x) ® T(y))
(u(x) ® €(y))
(u(x) ® u(y))”

A further expansion of the submatrices results in a
correlation matrix that contains 225 scalar functions
of x and y. Only 120 of these scalar functions are
distinct, however.

X(x) @ X(y) =

A

The procedures to be employed in developing the
desired formulism is termed the method of smooth-
ing. A survey article by Frisch® discusses the his-

tory of the method as it applies to developing a formu-

lism to be satisfied by the mean response matrix,
Following Frisch, we first average Eq. (1) to obtain

(AXX) + (A'X") = F, (9)

A prime has been introduced to denote the difference
between a stochastic quantity and its mean value,
That is, for example,

A=A —(A). (10)

We note that (4) = 0 and that, for the problem of
interest, A’ is an algebraic matrix. Equation (9) is
not the desired equation on the mean response matrix
since, in addition to (X), it contains the unknown
average (A’'X"). It will become the desired equation
once we obtain an expression for (A’X’) in terms of
{X). To do this we subtract Eq.(9) from Eq. (1) to
obtain

(X' + (I— P)A'X' = — AXX). (11)

Here, Idenotes the identity operator and P denotes
the ensemble averaging operator, i.e.,

Ip=¢, Po=(p. (12)

Equation (12) is viewed as a condition to be satisfied
by X’ in which A’(X) is taken to be a known forcing
term. By direct substitution one can see that Eq.(12)
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is satisfied by the infinite series expression
X' = —EO (—)2[(I— PXA) 1A' |(A1AX)  (13)
n=

provided the series converges.6 In this expression,
(A4)-1 denotes the inverse of the operator {(A). If (4) is
a differential operator, as in the present case,a
uniquely specified inverse requires specification of
boundary conditions. The appropriate boundary con-
ditions are determined by the problem under consider-
ation. Let us restrict attention to problem in which

A and {4) require the same numbers and types of
boundary conditions in order to uniquely determine
their inverses. This is the case for the elasticity
problem. Now, in the original problem statement we
specify, in addition to the field equations, boundary
conditions. The appropriate boundary conditions for
{A)~1, as it occurs in Eq.(13), are homogeneous con-
ditions of the same type as that contained in the
original problem statement. In the elasticity example,
the original problem statement will specify either the
component of the traction vector or the component of
the displacement vector in each of three noncoplanar
directions at every boundary point. If the components
of the traction vector are specified, for example, then,
when we consider (4) in Eq. (13), the appropriate
boundary condition would be that the traction vector
is zero. Thus Eq.(13) represents an unambiguous
prescription for A’. [No claim is made that Eq.(13)
represents the only solution of Eq.(11). The state-
ment is just that Eq. (13) represents an unambiguous
prescription. The question as to whether the Dyson
equation is sufficiently restrictive to uniquely deter-
mine the mean response matrix can be raised after
the Dyson equation is obtained.] It is this prescription
that we substitute into Eq. (10) to obtain the desired
formulation on the mean response matrix. We write
this equation as

DX) = ((4) —M)X) =F, (14)

where the operator M has the following infinite series
prescription

M =—0 (MA[(I- PXATATKATA).  (15)
n=0

This equation is often termed a Dyson equation, and
the operator D is termed a Dyson operator. The
operator M is often termed the mass operator. For
the elasticity problem the Dyson equation leads to
the following tensor field equations on the mean
stress, mean strain, and mean displacement fields
(see Appendix A):

4(mp =1 (16)
<Tij> = <7:1'i>, (17
(&N = [ € (=, XK€y, (x1))dxl

+ $D, 0 x, x1) e, (x1) axl, (18)
(€;;0 = 3(3;Cu) + 3w;)). (19)

In Eq. (18) the first integral is over the extent of the
solid and the second integral is over the bounding sur-
face. The infinite series of the Dyson equation
appears in the prescriptions of the two-point tensor
fields €,;,,(x,x1) and D, (x,x3). As it applies to a
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solid of infinite extent, this formulation was given in
Ref. 2; some aspects of the solutions predicted by it
were given in Ref. 3; a uniqueness theorem for the
formulation was given in Ref. 7; and it was extended
to incorporate inertia effects in Ref. 8. We note here
the conclusion that when the randomly varying elastic
moduli tensor defines one length scale, say /, and the
variations in the mean strain field define a second
length scale, say L, where L 2> [, then to zeroth
order, Egs. (16)—(19) are approximated over most of
the solid by an effective moduli theory. (See next
section.)

To apply the method of smoothing to obtain an equa-
tion on (X(x) ® X(y)), we first form the Kronecker
product of Eq. (1) as it applies to a field point x to
the same equation as it applies to a second field point
y. The result is written
(A,® AR =G, (20)
where the subscript on A indicates the point at which
it is to be applied:

R(x,y) = X(x) ® X(y),

21
G(x,y) = F(®) @ F(y). (21)
Next, we write the Dyson equation for Eq.(20). In the
resulting prescription appears the inverse of

(A,®A)=(A)8(A)+ A, ®A).

We can express this inverse in the form of an infinite
series, each term of which requires only the inverses
of (A,) and (A ). So doing and performing an exten-
sive amount o%’ rearranging of terms results in the
desired equation on the correlation matrix. For de-
tails the reader is referred to McCoy.? The final
equation is written

(D,® D, — I XR(x,¥)) = G(x,y) (22)
or
<R(X, Y» = (D;]' ® D;l)G(X, Y)
+ (D31 ® Dy (R(%,¥)) (23)

= (X(x) ® (X(y)) + (D;1 ® D;)I, (R(x,¥)).

The operator 7 is given in the form of an infinite
series. Arranging this series in powers of A’, we can
write

I, =(A,® A — (AKA )14} ® A))

— (AL ® (AIKA 1A + o(A™), (24)
where 0(A’4) contains all terms containing fourth and
higher powers of A’. Equation (22) or (23) is often

termed a Bethe-Salpeter equation. The operator 7,
is often termed the intensity operator.

Expansion of the Bethe—-Salpeter equation for the
elasticity example is an extremely tedious procedure,
and the details have been relegated to the Appendix.
We present here the following results. The correla-
tion functions given by the displacement field, i.e.,
{u(x) ® u(y)), satisty the matrix operator equationl®

([all(x) ® a, 1(Y)]{[<a22(x)> - mzz(x)] ® [(azz(y»
- mzz(Y)] — i55(%, Y)}[a33(x) ® a33(Y)])<u(x) ® u(y)
=/® @ 1y (25)
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The matrix operators m,, and iz are given by the
infinite series in Egs.(A12) and (A17). The remaining
submatrices of (X(x) ® X(y)) are directly calculable
in terms of (#(x) ® u(y)). We present here, as
examples, the following equations on {e(x) ® €(y)} and
(1(x) ® 7(y):

. (e(x) ® €(y)) = [ag5(x) ® ag5(y)[u(x) ® u(y)) (26a)
an

(1(x) ® 7(y) = {[(agz(x)> - mzz(x)] ® [(azz(Y»

- mzz(Y)] — i55(x, Y)}<€(x) ® e(y). (26b)
These equations may be given in terms of a tensor
notation. We do so for the case of a solid .of un-
bounded extent.

Equation (25) leads to

ai2 8a2 ff[eili2i3 i4(x’ xl)@alaza3a4(Y’ b
i1i2i3i4a1a2a3a4(x’ xl;Y7 yl)]

X Vo, (K1), (yH)dxldy! = £, (K, (3),  (27)

and Egs. (26) become

(6,1, (K€ o (YD) = 3(53; 0

10y iy iglg aizéilis)(aa Goc a.

1 7273

0y 8,y (RN (3)
and

<Til1'2(x)Tocl az(Y» = ff[eili2i3i4(x’ xl)eala2a3a4(y’ y,)
= Giiyigigeayaga, (X x1;y,y1)]

x (g;,; (X1)€, o (y1)dx1dy?. (28)
In these equations, an ¢ subscript refers to the x co-
ordinate and an o subscript refers to the y coordinate.
The two-point tensor field denoted by a € is that
appearing in Eq.(18), and the four-point tensor field
denoted by g is given by the infinite series of Eq.
{A20). Both of these fields depend on statistical
moments of all orders of the elastic moduli tensor
and on the nature of the boundary conditions of the
problem to which the equations are to be applied. The
equations for a bounded solid are complicated by the
appearance of surface integrals. These equations for
a bounded solid are readily obtained by making use of
the expressions in the Appendix.

We consider some additional manipulations of the
derived formulism in the next section, in which we
investigate the weakly inhomogeneous solid and the
two length scale problem discussed in the Introduction.
We end this section by presenting the following dis-
cussion on the usefulness of the derived formulism.

The infinite series prescriptions for the various
kernels prevent the derived formulisms from repre-
senting an end product that has computational value
except for the special cases that enable our either
truncating or summing the series. It would appear,
therefore, that it should prove more fruitful to view
the derived formulisms as intermediate steps that
have been achieved without recourse to any physical
approximations or restrictions.11 To achieve formu-
lisms that will have computational value we engage in
some phenomenology and accept the derived formu-
lisms, without the series prescriptions for the kernel
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functions, as starting points. That is, we view the
kernel functions as formulation parameters that are
to be determined by physical experiments under lab-
oratory conditions just as the elastic moduli tensor
of the classical theory is to be determined. One dis-
tinction is to be noted between the kernel functions as
formulation parameters and the elastic moduli tensor
as aformulation parameter and that is that the former
arenot identified as material parameters. The nature
of the boundary conditions of the problem to which the
formulism is to be applied enters the infinite series
definition of each of the kernel functions via the
Green's function matrix G. (See Eq.{Al).) While it
would be very desirable for our kernel functions to be
dependent only on the material properties of the solid,
this is not a requirement of a useful computational
formulism. We do note that the dependence of the
kernel functions on the boundary conditions is the
same for a class of boundary conditions and that the
class is identified by a canonical condition. We
further note that it can be argued, for the class of
materials to which we intend to apply the formulism
(see the Introduction), that the dependence of the
kernel functions on the boundary conditions will be
significant only if the pair (or quartet) of points on
which the functions are defined lie within a thin layer
of the bounding surface. The reader is referred to
Ref. 2 for these arguments, We might assume that
any error that results from ignoring the boundary de-
pendence of the kernel functions will similarly be
limited to field points that fall within such boundary
layers. Thus, we can argue that formulisms can be
achieved for making predictions over much of the
solid based on the kernel functions being viewed as
material parameters, The regions in which the pre-
dictions made by such formulisms break down will be
seen to be regions in which it is extremely difficult
to make or interpret predictions.

The next step in the direction of obtaining a useful
computational formulism is to place restrictions on
the kernel functions.12 This step is of obvious im-
portance since it would take a nondenumerably in-
finite number of physical measurements to completely
determine a kernel function. Some obvious restric-
tions on the kernel functions will be supplied by in-
variance requirements, causality requirements, etc,
Care must be taken in this regard that one doesn't un-
critically extrapolate some of the like requirements
of the classical theory. For example, it is erroneous
to conclude that the average increment of work done
by the internal forces in a region is a region integral
of (7;;) d(e;). After satisfying these general restric-
t1ons we further limit the degrees of freedom in the
kernel functions by delineating classes of problems to
be analyzed. A specific class is to be defined by the
nature of any additional restrictions we place on the
kernel functions. (Again, we refer to Ref, 12.) The
usefulness of a particular class will ultimately de-
pend on the degree of coincidence of the predictions
made by a given restricted formulism and experi-
mental data.

We intend to consider the results of postulating some
restrictions in a future work.

WEAKLY INHOMOGENEOUS SOLID

It proved convenient to carry out the derivation pro-
cedure leading to the Dyson and Bethe—Salpeter equa-
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tions using a matrix notation. Once the procedure
has been accomplished, however, it is just as con-
venient to switch to a tensor notation. The material
properties of the solid are given in the tensor nota-
tion by C,;,,, which is termed the elastic moduli ten-
sor, The relatlonshlp between the elements of this
fourth rank tensor and those of the a,, matrix are
readily obtained by comparing the equations given by
(A5) and (A6) of the Appendix.

The infinite series prescriptions for the kernel func-
tions that appear in the general formulisms are
arranged in increasing powers of C/;,,, the randomly
fluctuating part of the elastic moduli tensor. This
suggests that, for a weakly inhomogeneous solid, we
can obtain approximations to these kernel functions
by truncating these series prescriptions. Retaining
terms up to and including second order in powers of
C/j»1» we have the following expressions:

(%,x1)

1‘ i3ty

= [{c; finiai,? isi i7i8<c',1i2i5i6(x) i iy (=]

X 00k~ X1) + E (6, KOG s (RG] (1),
b XY) = 1 (KD B, 6 X (RCE, (D),
iigigigcty ooy, % X Y, 1)

= 0] 115, Ca 0,0, (TNE(X — XDB(Y — ¥,
ii%:igiQ 1a2a3a4( x5y, 7%

2)
ilyigiy Oy 0,000

(x,x};y,y}) =0. (29)
Each of the terms are defined in the Appendix. Sub-
stitution of these into the general formulisms results
in what might be termed the weakly inhomogeneous
formulisms. It is to be assumed that the solutions of
the weakly inhomogeneous formulisms converge to the
solutions of the general formulisms in the indicated
limit. However, we might suspect that the conver-
gence will probably be an asymptotic convergence and
that, further, it will not be uniform.

We might parenthetically remark here that although
the case of a weakly inhomogeneous solid is of limited
practical significance, it is of great theoretical signi-
ficance since it is a case for which the general formu-
lism is completely defined without resorting to any
phenomenology. Thus, it provides us with a means to
physically verify the derived formulism. This is of
interest because of our present inability to rigorously
justify all of the mathematical steps of the derivation
procedure. In addition, the weakly inhomogeneous
solid might provide forms for the kernel functions,
which have a wider range of applicability.

Consider a weakly inhomogeneous solid of the type
discussed in the Introduction. For such solids it is
reasonable to assume that the statistics of a material
property that is measured at two points in the solid
are independent if the distance between the points
exceeds some limiting value. We denote this limiting
value by ! and expect that, for a polycrystal, [ is of
the order of a linear dimension of a single crystal.
For a composite, if the locations of the fibers are to
be statistically independent from one another, then it
is expected to be of the order of a characteristic
fiber dimension. Statistical independence requires,
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among other things, that (C’.

1 l l Z ( (x1)> = 0
Referring to Eq. (29), therefore we 1mmed1ately con-
clude that the kernels are zero if the pair (or quartet)
of points on which they are defined fall outside a
neighborhood, of linear dimension I, of one another.
Further, upon making reference to Eq. (18), we note
that the surface integral appearing therein offers a
contribution only if the field point falls within a layer
of linear dimension ! of a bounding surface. In what
follows, we shall not attempt to make predictions of
the response measures for points within the boundary
layers.

)C/

’llll

The smallest characteristic dimension of the overall
geometry of the solid and of all forcing mechanisms
is denoted by L, and we restrict attention to problems
in which I/L < 1. We now assume that the variations
in the average response fields with a change in abso-
lute position is likewise measurable only on the L
scale. This assumption is supported by a self-con-
sistency argument between the assumption and the
predictions of the approximate formulism that re-
sults from the assumption, We note that the self-con-
sistency argument breaks down in the vicinity of
boundary surfaces and forcing mechanisms. As a con-
sequence of the assumption, the averaged strain field
that appears in the integrals in Eq.(18) are taken to
be constant over the region within which the inte-
grands are nonzero. Thus, Egs.(16)—(19) reduce to
the classical elasticity formulism over much of the
solid. Within the boundary layer discussed in the
preceeding paragraph, there exist some differences.
As already stated, we intend to ignore the boundary
layers in this paper. For a further discussion see
Refs. 2 and 3.

We now turn to the Bethe-Salpeter formulism and
introduce both the weakly inhomogeneous prescrip-
tions and the two length scale assumptions. In doing
this we ignore all boundary layers of the type dis-
cussed.

By direct substitution of Egs. (29) into Eqgs. (27), we
obtain a set of integro-partial differential equations
that contain spatially varying coefficients, on the
correlation of the displacement field. It is to be ex-
pected that this set of equations will present severe
difficulties to even a numerical approach to the prob-
lem. It is to simplify this formulism that we intro-
duce the presence of two length scales, Using the
arguments of the preceeding paragraph, the integral
operators that appear in the equations become dif-
ferential operators. We write

8, 00, [(Cii Co

iglolzty o) Xp0rg0t, iy iziyQy oty

X aisa%( ui4(x) u%(y))]

RCS 2)

= ﬁl(x)fal(}?), (30)
where
Citi2i3i4 = Je, iaig K X ")dx?
and (31)
iyigiglaaa 20c3a4(x’ y) = <Ci’li2i3i4(x)cc’tla2a3a4(y»'

In this equation, Ci’:iziai4 is termed the effective
elastic moduli tensor. For homogeneous statistics,

*
iyisigi, 152 constant and T, ; [ pigla %y &y dgty depends only

on difference coordinates.
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A further simplification of Eq.(30) is possible. To
accomplish this it is convenient to introduce a series
of integrations and differentiations of Eq. (30) to
obtain an integral equation formulation on
<€ili2(x)€o¢1a2(y»' First we obtain from Eq.(30) the

following integro-differential equations on the corre-
lations of the displacement field:

0, () 1, (7)) = s (%) G, (9))
+JJ Vili;x, xl)Valaz(y,yuaigva;;) (32)
X [1"1 5(x1’ y1)aiil)aé})%s(x1)ua5(y1))]dx1dy1’

22314150( 2a3a4a

where V, is the displacement Green's function tensor
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for the effective modulus formulation. It is the analog
of Vili (x,x1), which is given in the Appendix, as it
2

applies to the effective modulus formulation. Equation
(32), in turn, leads to the following integro-differen-
tial equations on the correlations of the strain field.
[See Eq. (28)].

<€i A (x)eot o, ) = <€i tin (x)) <€a1a2(Y)>
+ fsz 1 1 (X Xl)Eo): azad(y’yl)aiil)acfj)

x [ri3i4i5i6a3a4oc5a6(xl’ y1)<€i5i6(x1)6a5 ae(yl

(33)
)]dxtdy1,
where E*,

i (x,x1) is the strain Green's function ten-

sor for the effective modulus formulation. [Equation
(33) represents 81 equations on the 81 components of
<€i1i2(x)€a1°¢2 (y)). Of course, only 21 of these equa-

tions are different from the remaining, and there are
only 21 distinct functions of x, y that are defined by
the components. A reference to an inversion or a
partial inversion of Eq. (33) implies an inversion or
partial inversion of the 21 different equations.]
Finally, upon making use of Green's theorem as dis-
cussed in the Appendix, the following integral equa-
tions are obtained on the correlations of the strain
field.13

[ * *

.. 0.. 6 [} — AT, . r .. X
'3 tpta %103 %% iatsls *1%2%5% ’5’613’4“5‘16“3“4( Y]

x (eiaiq(x)eas%(y))

= {g; FRCACHI )

+ S S F s 8 XOFS o 3,90,
x (1 (x1)e, , (y1)) dxldy?,

and E*

tl 232

(x1,y1)
(34)
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*
where A, it lq

and

l1114

are the analog of A,
given in the Appendix, as they apply to the

F
iiytaty

effective modulus formulation.
We now make use of the facts that T (xt

111.56 3 4“5“6 ’yl)
is nonzero only for y! with a neighborhood of x1, of
linear dimension [, and that leazasa (y, y?) varies
little with a change in y! over a distance of order ] to
approximate the double integral